Blood clotting protein may inhibit spinal cord regeneration

Jul 03, 2007
Blood clotting protein may inhibit spinal cord regeneration
Fibrinogen (red) and activated EFGR (green) in the spinal cord after injury.

Fibrinogen, a blood-clotting protein found in circulating blood, has been found to inhibit the growth of central nervous system neuronal cells, a process that is necessary for the regeneration of the spinal cord after traumatic injury. The findings by researchers at the University of California, San Diego (UCSD) School of Medicine, may explain why the human body is unable to repair itself after most spinal cord injuries.

The study, led by Katerina Akassoglou, Ph.D., assistant professor in UCSD’s Department of Pharmacology, is the first evidence that when blood leaks into the nervous system, the blood protein contributes to the neurons’ inability to repair themselves. The findings, which show the molecular link between vascular and neuronal damage during injury to the central nervous system, was published in the online issue of the Proceedings of the National Academy of Sciences on July 2.

The research team studied three types of spinal cord injuries in mice and rats which resulted in cellular and vascular damage, and leakage of fibrinogen from the blood vessels. Once injured, neurons cannot be repaired because of various inhibitors that are present in the brain and the spinal cord after damage, which results in a patient’s paralysis. The researchers were surprised at the massive deposits of fibrinogen found at the sites of injury. That discovery led them to investigate the protein’s effect on neuronal cells’ ability to regenerate.

“Our study shows that fibrinogen directly affects neurons by inhibiting their ability for repair,” said Akassoglou. Fibrinogen – contained in the blood which leaks at the site of injury – begins the process of inhibiting axonal growth by binding to the beta 3 integrin receptor. This binding, in turn, induces the activation of another receptor on the neuronal cells, called the epidermal growth factor receptor. When the second receptor is activated, it inhibits the axonal growth. Other inhibitors have been identified that use the same epidermal growth factor receptor, but this is the first blood-derived inhibitor that has been found.

The discovery may open the door to a possible strategy to improving recovery after spinal cord injury by discovering a way to block activation of neuronal receptors by fibrinogen.
Identifying the specific inhibitors that impede the repair process could provide ways to regenerate and connect the damaged nerves and initiate recovery from paralysis after spinal cord injury.

“Inhibiting the damaging effects of fibrinogen on neurons may potentially facilitate repair in the nervous system after injury” said Akassoglou. A similar mechanism could be at work in other neurological diseases that result in paralysis, such as multiple sclerosis or hemorrhagic stroke, where blood vessels break and bleed into the brain. She added that such a therapeutic approach wouldn’t interfere with fibrinogen’s essential role in coagulation, because its blood-clotting mechanism depends on binding with a different receptor.

Source: University of California - San Diego

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

Japan dolphin hunt goes on after slaughter: campaigners

Jan 22, 2014

Japanese fishermen were out at sea attempting to trap more dolphins on Wednesday, campaigners said, after the bloody slaughter of dozens of the animals the previous day was hidden from view behind screens.

Unlocking the brain's secrets using sound

Jan 22, 2014

(Phys.org) —The brain is a reclusive organ. Neurons the cells that make up the brain, nerves, and spinal cord communicate with each other using electrical pulses known as action potentials, but their interactions are complicated ...

New device for rapid, mobile detection of brain injury

Dec 20, 2011

When accidents that involve traumatic brain injuries occur, a speedy diagnosis followed by the proper treatment can mean the difference between life and death. A research team, led by Jason D. Riley in the Section on Analytical ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

Apr 18, 2014

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 0

More news stories

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Easter morning delivery for space station

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.