Device could put disease detection in the palm of a hand

Jul 03, 2007
Device could put disease detection in the palm of a hand
Berkeley associate professor Lydia Sohn (right) explains her nanocytometer to Arden Bement, director of the National Science Foundation, at a Capitol Hill exhibition.

Lydia Sohn, associate professor of mechanical engineering at UC Berkeley, took her show on the road last week with a demonstration of her handheld nanocytometer at a "science fair" for leaders of Congress and the National Science Foundation.

The Coalition for National Science Funding Exhibition, on Capitol Hill, brought together researchers from 16 universities and 40 national scientific and educational associations. Sohn's contribution was her "pore-on-a-chip" technology, developed with an NSF grant, that makes disease detection at home or in the field an affordable reality. The device is currently in the pipeline for commercial development.

The nanocytometer is a pocket-sized device that can rapidly identify diseases by testing a single drop of blood using an inexpensive disposable cartridge. The cartridges contain a silicon chip laden with artificial nanopores that mimic the filtration system of human cells.

"The nanocytometer lets us work at the intersection of a number of disciplines, from biology an mechanical engineering to solid-state physics and chemical engineering," says Sohn, who developed the device in collaboration with Andrea Carbonaro and Haiyan Huang of UC Berkeley and Lucy Godley of the University of Chicago. The tool has the potential to boost survival chances for leukemia, prostate or breast-cancer patients — particularly where the cancer has recurred — by offering early detection of rare, isolated cancer cells.

Source: UC Berkeley

Explore further: Chemists design nanoparticles that can deliver three cancer drugs at a time

add to favorites email to friend print save as pdf

Related Stories

The promise and peril of nanotechnology

Mar 26, 2014

Scientists at Northwestern University have found a way to detect metastatic breast cancer by arranging strands of DNA into spherical shapes and using them to cover a tiny particle of gold, creating a "nano-flare" ...

Colored diamonds are a superconductor's best friend

Mar 06, 2014

(Phys.org) —Flawed but colorful diamonds are among the most sensitive detectors of magnetic fields known today, allowing physicists to explore the minuscule magnetic fields in metals, exotic materials and ...

Big step for next-generation fuel cells and electrolyzers

Feb 27, 2014

A big step in the development of next-generation fuel cells and water-alkali electrolyzers has been achieved with the discovery of a new class of bimetallic nanocatalysts that are an order of magnitude higher ...

Recommended for you

User comments : 0

More news stories

Making 'bucky-balls' in spin-out's sights

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Melting during cooling period

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...