Device could put disease detection in the palm of a hand

Jul 03, 2007
Device could put disease detection in the palm of a hand
Berkeley associate professor Lydia Sohn (right) explains her nanocytometer to Arden Bement, director of the National Science Foundation, at a Capitol Hill exhibition.

Lydia Sohn, associate professor of mechanical engineering at UC Berkeley, took her show on the road last week with a demonstration of her handheld nanocytometer at a "science fair" for leaders of Congress and the National Science Foundation.

The Coalition for National Science Funding Exhibition, on Capitol Hill, brought together researchers from 16 universities and 40 national scientific and educational associations. Sohn's contribution was her "pore-on-a-chip" technology, developed with an NSF grant, that makes disease detection at home or in the field an affordable reality. The device is currently in the pipeline for commercial development.

The nanocytometer is a pocket-sized device that can rapidly identify diseases by testing a single drop of blood using an inexpensive disposable cartridge. The cartridges contain a silicon chip laden with artificial nanopores that mimic the filtration system of human cells.

"The nanocytometer lets us work at the intersection of a number of disciplines, from biology an mechanical engineering to solid-state physics and chemical engineering," says Sohn, who developed the device in collaboration with Andrea Carbonaro and Haiyan Huang of UC Berkeley and Lucy Godley of the University of Chicago. The tool has the potential to boost survival chances for leukemia, prostate or breast-cancer patients — particularly where the cancer has recurred — by offering early detection of rare, isolated cancer cells.

Source: UC Berkeley

Explore further: Nano-scale gold particles are good candidates for drug delivery

add to favorites email to friend print save as pdf

Related Stories

Postcards from the photosynthetic edge

Jul 09, 2014

A crucial piece of the puzzle behind nature's ability to split the water molecule during photosynthesis that could help advance the development of artificial photosynthesis for clean, green and renewable ...

Helping Native Americans achieve energy independence

Jun 19, 2014

Tiny wood-frame and dome-shaped hogans dot the landscape of the Navajo Nation's reservation in the Southwest. Around them are natural wonders such as canyons carved into the earth billions of years ago and ...

Guarding against 'Carmageddon' cyberattacks

Jun 11, 2014

The potential value of turning the nation's freeways into "smart transportation systems" is enormous. Equipping the nation's concrete arteries with a nervous system of computers and sensors that directly control on-ramp signals ...

Recommended for you

Graphene surfaces on photonic racetracks

4 hours ago

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

5 hours ago

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

6 hours ago

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0