The fisherman is a predator like any other

Jul 02, 2007

For Peru fishing is a prime source of foreign exchange, second only to mining. The country’s anchovy fishing fleet, which seeks the Peruvian anchovy Engraulis ringens, is the world’s largest single-species fishery, with an average of 8% of global landings.

For safety and monitoring purposes, vessels have the statutory obligation to be equipped with satellite geopositioning indicators, seeing that industrial-scale fishing is prohibited within a band of 5 nautical miles (about 9 kilometres) from the coast.

This satellite device, the vessel monitoring system (VMS), gives the real-time position of the vessels to an accuracy of 100 m, communicated to bodies responsible for vessel movement recording and scientific monitoring of fishing. Scientists from the IRD and the Peruvian Institute of the Sea (IMARPE) used this high-resolution spatial information to characterize vessel movement in campaigns targeting shoals of this anchovy species, a pelagic fish that usually lives and builds up off the coasts. These methods shed light on the spatial interactions between fish and fishermen and enabled researchers to devise new tools that could improve monitoring and hence operational fi sh stock management.

The characteristics of movements traced between December 1999 and March 2003 by the 809 vessel fleet were compared with those of theoretical movement models usually applied to study trajectories of animals.

The results showed that in their search for fish concentrations, the fishermen adoptedmovement strategies similar to those described for natural predators, such as albatross or seals. Attributes considered as characteristically human, like the use of detection technologies (sonar, echo-sounding), communications (radio between vessels), and also economic motives or attachment to a port, did not produce a prey search strategy radically different from that of animal predators. Whether human or not, top predators of marine ecosystems must confront a degree of uncertainty as to the location of their prey. They therefore develop search strategies that enable them to manage this uncertainty while reducing “unproductive” movements to a minimum.

This convergence found between prey search by fishermen and natural predators could change our general perception of human activity in marine ecosystems exploited for fishing. Fishermen are not solely economic agents whose catches (i.e. removal of organisms) constitute a disturbance acting from outside the ecosystem.

They are part and parcel of it and their behaviour obeys the same laws as for other higher predators. Such results emphasize the importance of applying an ecosystembased approach to fisheries management, integrating knowledge about the biotic, abiotic and human components of the marine ecosystems exploited, along with their interactions.

This study will moreover have immediate practical applications for fish stock management, as VMS data analysis provided an indication in real time of the fragility of the stock drawn upon. Off Peru, the anchovy are at the mercy of fishermen particularly when climatic conditions force shoals to gather and stay very close to the coast.

The research team indeed showed that the spatial behaviour of fishermen was a good indicator of the spatial distribution of fish.

Thus the grouping together of fishing vessels near the coast can be an alarm signal showing high vulnerability of stock exploited and give clues as to possible management measures to relieve the fishing pressure during these critical periods. This type of analysis, already used for monitoring the Peruvian anchovy stock, is being developed for application to European fisheries by way of the European Project CEDER, initiated by the European Union as part of its Sixth Framework Programme.

Source: Institut de Recherche Pour le Développement

Explore further: Scientists solve reptile mysteries with landmark study on the evolution of turtles

add to favorites email to friend print save as pdf

Related Stories

Surrogate sushi: Japan biotech for bluefin tuna

Nov 20, 2014

Of all the overfished fish in the seas, luscious, fatty bluefin tuna are among the most threatened. Marine scientist Goro Yamazaki, who is known in this seaside community as "Young Mr. Fish," is working to ...

A thousand years of environmental change in Polynesia

Nov 14, 2014

Environmental change is nothing new in Polynesia. For centuries, the inhabitants of the volcanic, sea-battered islands have been employing a variety of strategies to adapt to their changing landscapes.

Dead fish in Rio Olympic bay baffle scientists

Nov 08, 2014

Thousands of dead fish have begun mysteriously washing up in the polluted Rio bay that will host sailing events at the 2016 Olympics—and experts are at a loss to explain why.

Recommended for you

CPR for South Coast plants

1 hour ago

Department of Parks and Wildlife (DPaW) Flora Conservation Officer Sarah Barrett and FloraTechnical Officer Dylan Lehmann set up a display at this year's Albany Wildflower Exhibition to explain some of the ...

Autopsies from space: who killed the sea lions?

1 hour ago

A decade ago, we set out to unravel deep ocean crime scenes we weren't even sure existed. The crime? Endangered Steller sea lions were rapidly disappearing in parts of Alaska. Their numbers dropped by 80% in three decades, yet only rarely did anyone see or sample dead sea lions. Live sea lions stu ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.