Biotech breakthrough could end biodiesel's glycerin glut

Jun 26, 2007

With U.S. biodiesel production at an all-time high and a record number of new biodiesel plants under construction, the industry is facing an impending crisis over waste glycerin, the major byproduct of biodiesel production. New findings from Rice University suggest a possible answer in the form of a bacterium that ferments glycerin and produces ethanol, another popular biofuel.

"We identified the metabolic processes and conditions that allow a known strain of E. coli to convert glycerin into ethanol," said chemical engineer Ramon Gonzalez. "It's also very efficient. We estimate the operational costs to be about 40 percent less that those of producing ethanol from corn."

Gonzalez said the biodiesel industry's rapid growth has created a glycerin glut. The glut has forced glycerin producers like Dow Chemical and Procter and Gamble to shutter plants, and Gonzalez said some biodiesel producers are already unable to sell glycerin and instead must pay to dispose of it.

"One pound of glycerin is produced for every 10 pounds of biodiesel," said Gonzalez, Rice's William Akers Assistant Professor in Chemical and Biomolecular Engineering. "The biodiesel business has tight margins, and until recently, glycerin was a valuable commodity, one that producers counted on selling to ensure profitability."

Researchers across the globe are racing to find ways to turn waste glycerin into profit. While some are looking at traditional chemical processing -- finding a way to catalyze reactions that break glycerin into other chemicals -- others, including Gonzalez, are focused on biological conversion. In biological conversion, researchers engineer a microorganism that can eat a specific chemical feedstock and excrete something useful. Many drugs are made this way, and the chemical processing industry is increasingly finding bioprocessing to be a "greener," and sometimes cheaper, alternative to chemical processing.

In a review article in the June issue of Current Opinion in Biotechnology, Gonzalez points out that very few microorganisms are capable of digesting glycerin in an oxygen-free environment. This oxygen-free process -- known as anaerobic fermentation -- is the most economical and widely used process for biological conversion.

"We are confident that our findings will enable the use of E. coli to anaerobically produce ethanol and other products from glycerin with higher yields and lower costs than can be obtained using common sugar-based feedstocks like glucose and xylose," Gonzalez said.

Source: Rice University

Explore further: Road transport in Spain is more efficient during financial crisis periods

add to favorites email to friend print save as pdf

Related Stories

Water in smog may reveal pollution sources

11 hours ago

The chemical signature of water vapor emitted by combustion sources such as vehicles and furnaces has been found in the smoggy winter inversions that often choke Salt Lake City. The discovery may give researchers ...

Recommended for you

Why your laptop battery won't kill you

17 hours ago

News on Tuesday that major U.S. airlines are no longer going to ship powerful lithium-ion batteries might lead some to fret about the safety of their personal electronic devices.

New incubator network to help clean-energy entrepreneurs

22 hours ago

The Energy Department's National Renewable Energy Laboratory (NREL) and the Electric Power Research Institute (EPRI) have launched the Clean Energy Incubator Network. The program, funded by the Energy Department, aims to ...

Can we track the world's nuclear weapons?

Mar 03, 2015

The Bulletin of the Atomic Scientists has unveiled an interactive infographic that tracks the number and history of nuclear weapons in the nine nuclear weapon states: the United States, Russia, the United Kingdom, France, C ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.