Researchers report that gene therapy awakens the brain despite blindness from birth

Jun 26, 2007

Researchers at the University of Pennsylvania have demonstrated that gene therapy used to restore retinal activity to the blind also restores function to the brain’s visual center, a critical component of seeing.

The multi-institutional study led by Geoffrey K. Aguirre, assistant professor of neurology in Penn's School of Medicine, shows that gene therapy can improve retinal, visual-pathway and visual-cortex responses in animals born blind and has the potential to do the same in humans.

“The retina of the eye captures light, but the brain is where vision is experienced,” Aguirre said. “The traditional view is that blindness in infancy permanently alters the structure and function of the brain, leaving it unable to process visual information if sight is restored. We’ve now challenged that view.”

The results support the potential for human benefit from retinal therapies aimed at restoring vision to those with genetic retinal disease.

Researchers used functional MRI to measure brain activity in blind dogs born with a mutation in gene RPE65, an essential molecule in the retinoid-visual cycle. The same mutation causes a blindness in humans called Leber congenital amaurosis, or LCA. It is the first human eye-retinal disorder slated for gene therapy.

Gene therapy, performed by introducing a working copy of RPE65 into the retina, restored eye function in canines. Yet, it was previously unclear if the brain could “receive” the restored sight.

The team found that gene therapy to the eye dramatically increased responses to light within the visual cortex of the canine brain. The recovery of visual brain function occurred in a canine that had been blind for the first four years of its life, and recovery was found to persist in another dog for at least two-and-a-half years after therapy, suggesting a level of permanence to the treatment.

Penn scientists then studied the structure and function of the visual brain of human patients with the same form of blindness. Young adults with blindness from RPE65 mutation had intact visual brain pathways with nearly normal structure. The Penn team also found that, while the visual cortex of these patients with LCA did not respond to dim lights, the brain’s reaction to brighter lights was comparable to that of individuals with normal sight.

"It seems these patients have the necessary brain pathways ready to go if their eyes start working again,” Aguirre said.

The results of the current study are critical to these human clinical trials, led at Penn’s Scheie Eye Institute by Samuel G. Jacobson, professor of ophthalmology, and Artur V. Cideciyan, research associate professor of ophthalmology.

“Existence of functional potential both in the eye and brain are prerequisites for successful gene therapy in all forms of LCA,” Cideciyan said. “In the RPE65 form of the disease, we now have evidence for both, and treatment at the retinal level has the hope of recovery of useful vision in patients.”

Source: University of Pennsylvania

Explore further: First genetic link discovered to difficult-to-diagnose breast cancer sub-type

add to favorites email to friend print save as pdf

Related Stories

Transplanted stem cells form proper brain connections

Jan 19, 2010

Transplanted neurons grown from embryonic stem cells can fully integrate into the brains of young animals, according to new research in the Jan. 20 issue of The Journal of Neuroscience. Healthy brains have s ...

Hope for children with rare genetic defect

Apr 19, 2011

To date, there is no therapy for Batten disease. Patients pass away in their teens or twenties. Four years ago, the working group lead by Dr. Mika Ruonala at Goethe University, Frankfurt, Germany started to ...

Recommended for you

Refining the language for chromosomes

8 hours ago

When talking about genetic abnormalities at the DNA level that occur when chromosomes swap, delete or add parts, there is an evolving communication gap both in the science and medical worlds, leading to inconsistencies in ...

Down's chromosome cause genome-wide disruption

Apr 16, 2014

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

User comments : 0

More news stories

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

Our brains are hardwired for language

A groundbreaking study published in PLOS ONE by Prof. Iris Berent of Northeastern University and researchers at Harvard Medical School shows the brains of individual speakers are sensitive to language univer ...

Study recalculates costs of combination vaccines

One of the most popular vaccine brands for children may not be the most cost-effective choice. And doctors may be overlooking some cost factors when choosing vaccines, driving the market toward what is actually a more expensive ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...