Model aids understanding of protein networks

Jun 25, 2007

An international team of researchers, including several from MIT, has developed a computational model that helps identify relationships between proteins and the enzymes that regulate them.

The work could help researchers understand the complex protein networks that influence human disease, including cancer. The researchers report their findings in the cover story of the June 29 issue of Cell.

The new method, known as NetworKIN, can trawl through existing research data and use it to illuminate protein networks that control cellular processes. It focuses on enzymes called kinases, which are involved in many cell signaling pathways, including repair of DNA damage that can lead to cancer.

The model was developed by researchers from MIT, the Samuel Lunenfeld Research Institute of Mount Sinai Hospital in Canada and the European Molecular Biology Laboratory in Germany.

NetworKIN "gives us the tools to take the information we already have and begin to build a map of the kinase signaling pathways within the cells," said Michael Yaffe, MIT associate professor of biology and biological engineering, a member of MIT's Center for Cancer Research and one of the authors of the paper.

"By getting a network-wide view, multiple aberrant genes of kinase-controlled processes are more easily targeted," said Rune Linding, a visiting scientist at MIT's Center for Cancer Research, postdoctoral fellow at the Samuel Lunenfeld Research Institute and one of the lead authors of the paper. "In the future, complex human diseases will be treated by targeting multiple genes."

Kinases act by phosphorylating, or adding a phosphate group, to a protein. That signal tells a protein what it should be doing. Yaffe estimated that at any one time, 30 to 50 percent of the proteins in a cell are phosphorylated.

Because kinases play such a critical role in cellular processes, including DNA repair and cell division, scientists have been working to identify where phosphorylation takes place in a target protein. Mass spectrometry makes it easy to identify those sites, but until now there has been no good way to figure out which kinases are acting on each site, Yaffe said.

"It's a huge bottleneck," he said. "We're getting thousands of phosphorylation sites, but we don't know which kinase phosphorylated them, so we don't know what pathway to put them in."

To solve that problem, the researchers developed a two-step approach.

In the first step, they used a pair of previously developed computer programs that can analyze the amino acid sequence of the phosphorylation site and predict which family of kinases is most likely to bind to and phosphorylate it.

However, each family includes several kinases, and the sequence alone cannot tell you which one acts on the site.

To pinpoint the kinases more accurately, the researchers developed a computational model that analyzes databases that contain information about signaling pathways and protein interactions. The program also performs "text mining" of published articles and abstracts to search for reported protein-kinase interactions.

By combining these two sources of information--sequences of the target proteins and contextual information about the interaction between proteins and kinases--the computational model can develop a detailed network that would be very difficult to create by manually examining the available data.

"The sequence gets us into the ballpark, but it's all of this contextual information that helps us figure out specifically which kinases are acting on which sites," said Yaffe, who is also affiliated with the Broad Institute of MIT and Harvard, and Beth Israel Deaconess Medical Center.

Other MIT authors on the paper are Gerald Ostheimer, a postdoctoral fellow in biological engineering, Marcel van Vugt, a postdoctoral fellow at the Center for Cancer Research, and Leona Samson, director of the Center for Environmental Health Sciences and professor of biology and biological engineering.

Source: MIT

Explore further: Japan's new whaling plan will prove hunt is science: negotiator

add to favorites email to friend print save as pdf

Related Stories

Unraveling bacterial behavior

Jul 18, 2013

Bacteria encounter a constant barrage of ever-changing temperature, acidity and chemical stimuli from their environment. The cells must absorb all of this information and choose the correct response—whether boosting their ...

Detecting whether a heart attack has occurred

Feb 14, 2011

During about 30 percent of all heart attacks, the patient experiences no symptoms. However, unmistakable signs of the attack remain in the bloodstream for days. MIT researchers, working with Massachusetts ...

Turning the cancer genes off

Nov 17, 2010

In the past 40 years, scientists have learned a great deal about how cells become cancerous. Some of that knowledge has translated to new treatments, but most of the time doctors are forced to rely on standard ch ...

Recommended for you

Dogs hear our words and how we say them

6 hours ago

When people hear another person talking to them, they respond not only to what is being said—those consonants and vowels strung together into words and sentences—but also to other features of that speech—the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.