Study identifies novel Parkinson's disease drug target

Jun 21, 2007

Researchers at the MassGeneral Institute for Neurodegenerative Disease (MGH-MIND) have identified a potential new drug target for the treatment of Parkinson’s disease and possibly for other degenerative neurological disorders.

In an upcoming issue of the journal Science, the investigators describe finding, in cellular and animal models, that blocking the action of an enzyme called SIRT2 can protect the neurons damaged in Parkinson’s disease from the toxic effects of alpha-synuclein, a protein that accumulates in the brains of Parkinson’s patients. The study, which also suggests that inhibiting this pathway could help in the treatment of other conditions in which abnormal proteins accumulate in the brain, is receiving early online release on the Science Express website.

“We have discovered a compelling new therapeutic approach for Parkinson’s disease, which we expect will allow our scientists – as well as those at pharmaceutical and biotech companies – to pursue innovative new drugs that will treat and perhaps even cure this disorder,” says Aleksey Kazantsev, PhD, director of MGH-MIND Drug Discovery Laboratory, who led the Science study. "Since the same sort of aggregation of misfolded proteins has been reported in
Huntington's and Alzheimer's diseases - as well as Lewy body dementia, which also involves alpha-synuclein deposits - we plan to test this approach in those
conditions as well."

Parkinson’s disease – characterized by tremors, rigidity, difficulty walking and other symptoms – is caused by the destruction of brain cells that produce the neurotransmitter dopamine. In recent years researchers at several centers have been studying the role of alpha-synuclein accumulations in dopamine-producing neurons, observed in patients with both inherited and sporadic Parkinson’s disease. MGH-MIND investigators have discovered that, in Parkinson’s, the alpha-synuclein molecule folds abnormally and form aggregates called inclusion bodies. Such inclusions of other abnormal proteins are seen in several disorders, but whether inclusions are toxic or protective to neurons has been controversial.

In a paper published last year in the Proceedings of the National Academy of Sciences, a research team led by Kazantsev analyzed ways to reduce the size of inclusions containing misfolded versions of alpha-synuclein or of the Huntington’s disease-associated protein huntingtin. They found that a compound called B2, which promotes the formation of larger inclusions, paradoxically appeared to reduce toxicity in cellular disease models, possibly by reducing the overall number of inclusions.

In the current study, the investigators began by seeking the mechanism underlying the observed effects of B2. Assays of the compound’s activity against a panel of key enzymes identified only one significant association – a weak but selective inhibition of SIRT2, which is known to regulate the cell cycle and may have a role in aging. An experiment using RNA interference to suppress SIRT2 and a related enzyme in human cell lines expressing alpha-synuclein confirmed that only the inhibition of SIRT2 reduced alpha-synuclein toxicity.

Kazantsev’s team then developed and identified more powerful inhibitors of SIRT2, based on the structure of B2. One of these novel inhibitors called AGK2 had 10 times the potency of B2 and was shown to protect dopamine-producing neurons from alpha-synuclein toxicity in cultured rat neurons and in an insect model of PD. Several additional compounds that act on the SIRT2 pathway have been identified, some which may be even better than AGK2 as candidates for drug development.

SIRT2 is known to act on a major protein component of microtubules, cellular structures that help move objects within cells, among other functions. The researchers theorize that inhibiting SIRT2 might promote microtubule-dependent transportation of alpha-synuclein into large aggregates; or it could strengthen microtubules that have been destabilized by misfolded alpha-synuclein.

Kazantsev explains, “For Parkinson’s disease, we can now pursue a straightforward drug development process by identifying potent and selective candidates from this class of compounds that can be tested in animal studies and eventual human trials. One of the most satisfying aspects is how this discovery validates our approach to drug discovery, which incorporates both the most advanced tools for screening candidate compounds and outstanding collaboration with our clinical and scientific experts in human disease.” Kazantsev is an assistant professor of Neurology at Harvard Medical School.

Source: Massachusetts General Hospital

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

Android gains in US, basic phones almost extinct

2 hours ago

The Google Android platform grabbed the majority of mobile phones in the US market in early 2014, as consumers all but abandoned non-smartphone handsets, a survey showed Friday.

Quest for extraterrestrial life not over, experts say

2 hours ago

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

23 hours ago

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 0

More news stories

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...