Study identifies novel Parkinson's disease drug target

Jun 21, 2007

Researchers at the MassGeneral Institute for Neurodegenerative Disease (MGH-MIND) have identified a potential new drug target for the treatment of Parkinson’s disease and possibly for other degenerative neurological disorders.

In an upcoming issue of the journal Science, the investigators describe finding, in cellular and animal models, that blocking the action of an enzyme called SIRT2 can protect the neurons damaged in Parkinson’s disease from the toxic effects of alpha-synuclein, a protein that accumulates in the brains of Parkinson’s patients. The study, which also suggests that inhibiting this pathway could help in the treatment of other conditions in which abnormal proteins accumulate in the brain, is receiving early online release on the Science Express website.

“We have discovered a compelling new therapeutic approach for Parkinson’s disease, which we expect will allow our scientists – as well as those at pharmaceutical and biotech companies – to pursue innovative new drugs that will treat and perhaps even cure this disorder,” says Aleksey Kazantsev, PhD, director of MGH-MIND Drug Discovery Laboratory, who led the Science study. "Since the same sort of aggregation of misfolded proteins has been reported in
Huntington's and Alzheimer's diseases - as well as Lewy body dementia, which also involves alpha-synuclein deposits - we plan to test this approach in those
conditions as well."

Parkinson’s disease – characterized by tremors, rigidity, difficulty walking and other symptoms – is caused by the destruction of brain cells that produce the neurotransmitter dopamine. In recent years researchers at several centers have been studying the role of alpha-synuclein accumulations in dopamine-producing neurons, observed in patients with both inherited and sporadic Parkinson’s disease. MGH-MIND investigators have discovered that, in Parkinson’s, the alpha-synuclein molecule folds abnormally and form aggregates called inclusion bodies. Such inclusions of other abnormal proteins are seen in several disorders, but whether inclusions are toxic or protective to neurons has been controversial.

In a paper published last year in the Proceedings of the National Academy of Sciences, a research team led by Kazantsev analyzed ways to reduce the size of inclusions containing misfolded versions of alpha-synuclein or of the Huntington’s disease-associated protein huntingtin. They found that a compound called B2, which promotes the formation of larger inclusions, paradoxically appeared to reduce toxicity in cellular disease models, possibly by reducing the overall number of inclusions.

In the current study, the investigators began by seeking the mechanism underlying the observed effects of B2. Assays of the compound’s activity against a panel of key enzymes identified only one significant association – a weak but selective inhibition of SIRT2, which is known to regulate the cell cycle and may have a role in aging. An experiment using RNA interference to suppress SIRT2 and a related enzyme in human cell lines expressing alpha-synuclein confirmed that only the inhibition of SIRT2 reduced alpha-synuclein toxicity.

Kazantsev’s team then developed and identified more powerful inhibitors of SIRT2, based on the structure of B2. One of these novel inhibitors called AGK2 had 10 times the potency of B2 and was shown to protect dopamine-producing neurons from alpha-synuclein toxicity in cultured rat neurons and in an insect model of PD. Several additional compounds that act on the SIRT2 pathway have been identified, some which may be even better than AGK2 as candidates for drug development.

SIRT2 is known to act on a major protein component of microtubules, cellular structures that help move objects within cells, among other functions. The researchers theorize that inhibiting SIRT2 might promote microtubule-dependent transportation of alpha-synuclein into large aggregates; or it could strengthen microtubules that have been destabilized by misfolded alpha-synuclein.

Kazantsev explains, “For Parkinson’s disease, we can now pursue a straightforward drug development process by identifying potent and selective candidates from this class of compounds that can be tested in animal studies and eventual human trials. One of the most satisfying aspects is how this discovery validates our approach to drug discovery, which incorporates both the most advanced tools for screening candidate compounds and outstanding collaboration with our clinical and scientific experts in human disease.” Kazantsev is an assistant professor of Neurology at Harvard Medical School.

Source: Massachusetts General Hospital

Explore further: Unsteady on your feet? Little touches could make all the difference

add to favorites email to friend print save as pdf

Related Stories

Feds: Don't expect winter to be polar vortex redux

21 minutes ago

(AP)—Federal forecasters don't expect a return of frequent cold blasts from the polar vortex this winter. Nor should the weather system that blocked rain from California last winter come back.

WASP has printer, will travel, to make houses

24 minutes ago

At Maker Faire Rome, an Italian 3D printer company is demonstrating a tall, portable machine that will bring 3D-printed dwellings to impoverished countries. WASP has been exploring low-cost solutions to ...

Cadavers beat computers for learning anatomy

4 minutes ago

Despite the growing popularity of using computer simulation to help teach college anatomy, students learn much better through the traditional use of human cadavers, according to new research that has implications ...

Cell architecture: Finding common ground

27 minutes ago

When it comes to cellular architecture, function follows form. Plant cells contain a dynamic cytoskeleton which is responsible for directing cell growth, development, movement, and division. So over time, changes in the cytoskeleton ...

Recommended for you

Neutralising antibodies for safer organ transplants

16 hours ago

Serious complications can arise following kidney transplants. If dialysis is required within the first seven days, then the transplanted organ is said to have a Delayed Graft Function (DGF), and essentially ...

User comments : 0