Tumor vessels identified by unique molecular markers

Jun 11, 2007

Results from a new study have made it easier for scientists to distinguish between growing blood vessels in healthy tissues and those that are associated with tumors. This is a significant finding because this distinction, particularly at a molecular level, has remained elusive for quite some time. The research, released in the June issue of the journal Cancer Cell, published by Cell Press, has exciting implications for development of more selective vascular-targeted anticancer therapeutics.

A major strategy for destroying cancer cells has been to disrupt the growing blood vessels that support tumor growth. However, current vascular-targeted therapies may also damage normal growing blood vessels. This is a concern because the formation of new blood vessels, or angiogenesis, continues to occur in adults, for example, during pregnancy, menstruation, and wound healing. Dr. Brad St. Croix and colleagues from the National Cancer Institute at Frederick executed a series of studies aimed at identifying markers that can be used to distinguish between proliferating blood vessels in normal and diseased tissues.

The researchers systematically examined gene expression patterns in the endothelial cells that line blood vessels derived from normal resting tissues, regenerating tissues, and tumors. A comparison of the normal vessels revealed several organ-specific endothelial genes that could potentially aid in the delivery of molecular medicine to specific anatomical sites. The study also revealed 13 genes that are selectively overexpressed in tumor blood vessels. Although the function of most of the newly identified genes in tumor blood vessels is unclear, many of the genes encode cell surface proteins, making them appealing targets for the development of new therapeutic agents.

One of the cell surface proteins identified, called CD276, was found to be frequently overexpressed in the blood vessels of a variety of human cancers. The researchers also report that in many of the tumors examined CD276 was also overexpressed by the tumor cells, making this protein a particularly attractive target because a suitable inhibitory molecule might be able to deliver a double blow: one to the tumor cells themselves and the other to the blood vessels that feed it. “These studies reveal that tumor vessels contain a unique molecular fingerprint that can be used to distinguish them from normal proliferating vessels,” explained Dr. St. Croix; “they also provide new targets that could help guide the development of safer vascular-targeted therapies with potentially fewer side effects.”


Source: Cell Press

Explore further: Why aren't there any human doctors in Star Wars?

add to favorites email to friend print save as pdf

Related Stories

Team enlarges brain samples, making them easier to image

Jan 15, 2015

Beginning with the invention of the first microscope in the late 1500s, scientists have been trying to peer into preserved cells and tissues with ever-greater magnification. The latest generation of so-called ...

Recommended for you

Why aren't there any human doctors in Star Wars?

2 hours ago

Though set "a long time ago in a galaxy far, far away," it isn't hard to see in the Star Wars films a vision of our own not so distant future. But Anthony Jones, a physician with a long background in health ...

Cambodia bans 'virgin surgery' adverts

Jan 29, 2015

The Cambodian government has ordered a hospital to stop advertising so-called virginity restoration procedures, saying it harms the "morality" of society.

What's happening with your donated specimen?

Jan 28, 2015

When donating blood, plasma, human tissue or any other bodily sample for medical research, most people might not think about how it's being used. But if you were told, would you care?

Amgen tops Street 4Q forecasts

Jan 27, 2015

Amgen Inc. cruised to a 27 percent jump in fourth-quarter profit and beat Wall Street expectations, due to higher sales of nearly all its medicines, tight cost controls and a tax benefit.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.