Flowering Signal Found

Jun 09, 2007

The signal that causes plants to flower, or "florigen," has been identified by researchers at UC Davis, the University of Arizona, Tucson, and collaborators in New Zealand and Mexico.

"This is the Holy Grail of plant biology," said William J. Lucas, professor of plant biology at UC Davis and senior author on the paper published in the May issue of the journal Plant Cell.

Working with pumpkins and squash, Ming-Kuem Lin, a visiting postdoctoral researcher in Lucas' lab and colleagues showed that a protein, FT, is transported through the phloem sap from the body of the plant to the growing tips to trigger flowering.

Many plants, including important crops such as rice, maize and wheat, flower in response to lengthening days in the spring or shortening days in fall. Researchers thought that florigen is made in the leaves as the length of the day changes and it is transported to the meristems, or growing tips of the plant, through the phloem network, which actively transports water, sugars and other molecules from the center of the plant to the periphery.

Lucas' research group works with common pumpkins (Cucurbita maxima), because of the large amount of sap they produce. But pumpkins do not flower in response to day length. So the team searched more than a hundred strains of related plants to find a wild squash, Cucurbita moschata, which flowers only in short days.

When the C. moschata plants were infected with a virus carrying the FT gene, they flowered regardless of day length. The viruses were found only in the leaves and stems, but not in the flowering buds, ruling out another possible candidate, the RNA produced by the FT gene.

The researchers grafted C. moschata onto C. maxima. Again, the plants flowered, as the signal was carried from the C. maxima leaves to the C. moschata meristems. The pumpkin FT protein was isolated from the phloem.

The experiments provide absolute, direct evidence that the FT protein moving through the phloem is the florigen, Lucas said. Phloem contains about 1,900 other proteins, many of which are also likely to be signals of one kind or another, he said.

In addition to opening up new ways to understand how plants regulate themselves, the findings could eventually have widespread applications in agriculture, Lucas said.

Source: UC Davis

Explore further: Micro fingers for arranging single cells

Related Stories

'Map spam' puts Google in awkward place

52 minutes ago

Google was re-evaluating its user-edited online map system Friday after the latest embarrassing incident—an image of an Android mascot urinating on an Apple logo.

Team develops faster, higher quality 3-D camera

1 hour ago

When Microsoft released the Kinect for Xbox in November 2010, it transformed the video game industry. The most inexpensive 3-D camera to date, the Kinect bypassed the need for joysticks and controllers by ...

Recommended for you

York's anti-malarial plant given Chinese approval

5 hours ago

A new hybrid plant used in anti-malarial drug production, developed by scientists at the University of York's Centre for Novel Agricultural Products (CNAP), is now registered as a new variety in China.

The appeal of being anti-GMO

10 hours ago

A team of Belgian philosophers and plant biotechnologists have turned to cognitive science to explain why opposition to genetically modified organisms (GMOs) has become so widespread, despite positive contributions ...

Micro fingers for arranging single cells

10 hours ago

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.