DNA damage to stem cells is central to ageing

Jun 08, 2007

DNA damage is a major mechanism behind the loss of adult stem cells over time, according to a Nature paper by Oxford University researchers and international colleagues.

The finding has implications for the use of adult stem cells in transplantation and, more broadly, for understanding the process of ageing itself, since stem cells are essential for repairing and regenerating tissue.

An adult stem cell is a cell that has not yet differentiated (specialised): it can become any one of various cell types. Adult stem cells can differentiate to yield the major specialised cell types of whatever tissue or organ they are found in. They also renew themselves. This makes them crucial for long-lived multicellular organisms like animals, which depend on tissue replenishment from adult stem cells for their continued existence.

Stem cells must be maintained throughout life with a minimum of mutations to their DNA, since these mutations could stop the stem cell working or even kill it. Professor Richard Cornall from the University of Oxford and colleagues studied stem cells that generate blood, found in bone marrow.

In order to establish the importance of DNA damage and repair, they looked at a mouse which lacked an enzyme crucial for DNA repair (DNA ligase IV, or ‘Lig4’).

The Lig4 enzyme repairs so-called ‘double-strand breaks’: breaks in the DNA double helix caused by oxidation and radiation that we are exposed to all the time. In the mice lacking Lig4, repairs were inefficient, and the DNA of the stem cells became damaged much faster, leading to loss of stem cells.

‘As we get older, it is known that our capacity to regenerate blood and other cells diminishes,’ says Professor Cornall. ‘In the mouse without Lig4, this process was accelerated. This shows how important DNA repair is in slowing down the loss of stem cells. In other words, DNA damage can be an important mechanism in tissue ageing.’

The findings have implications for the process of ageing itself. ‘It has been suggested that accumulation of DNA damage, leading to loss of adult stem cells, is a principal mechanism behind ageing,’ says Professor Cornall. ‘Our findings lend weight to that theory.’

He adds: ‘Our findings also imply that inherited or environmental factors that increase oxidative DNA damage may be key determinants of the rate of tissue ageing.’

The findings are also important for the use of adult stem cells in transplants. The success of cultivating and transplanting stem cells, for example for use in leukaemia patients, will depend on how often DNA breaks occur and how well they are repaired.

Source: University of Oxford

Explore further: Letrozole is a promising new treatment of male infertility, researcher says

add to favorites email to friend print save as pdf

Related Stories

New study shows safer methods for stem cell culturing

Feb 25, 2015

A new study led by researchers at The Scripps Research Institute (TSRI) and the University of California (UC), San Diego School of Medicine shows that certain stem cell culture methods are associated with increased DNA mutations. ...

End of CRISPR-CAS9 controversy

Feb 10, 2015

The IBS research team (Center for Genome Engineering) has successfully confirmed that CRISPR-Cas9 has accurate on-target effects in human cells, through joint research with the Seoul National University College ...

Improving genome editing with drugs

Feb 05, 2015

One of the most exciting scientific advances made in recent years is CRISPR—the ability to precisely edit the genome of cells. However, although this method has incredible potential, the process is extremely inefficient. ...

Recommended for you

Popular antioxidant likely ineffective, study finds

2 hours ago

The popular dietary supplement ubiquinone, also known as Coenzyme Q10, is widely believed to function as an antioxidant, protecting cells against damage from free radicals. But a new study by scientists at McGill University ...

New findings on 'key players' in brain inflammation

2 hours ago

Inflammation is the immune system's natural reaction to an 'aggressor' in the body or an injury, but if the inflammatory response is too strong it becomes harmful. For example, inflammation in the brain occurs ...

Gut microbial mix relates to stages of blood sugar control

22 hours ago

The composition of intestinal bacteria and other micro-organisms—called the gut microbiota—changes over time in unhealthy ways in black men who are prediabetic, a new study finds. The results will be presented Friday ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.