Researchers discover novel pathway that may promote immune system balance

Jun 08, 2007

Researchers at UCLA’s Jonsson Cancer Center have discovered a novel anti-inflammatory cell signaling pathway that may serve as a vital Yin-Yang mechanism to maintain the delicate balance of immune response.

The discovery, published in the June issue of the peer-reviewed journal Cell, may lead to new ways to fight cancer and inflammatory diseases, said Ke Shuai, a professor of hematology/oncology, a researcher at UCLA’s Jonsson Cancer Center and lead author of the study.

“The big picture message in this study is the finding of a new cellular pathway that operates to restrict inflammation and immunity.” Shuai said. “The immune system is vital in fighting pathogenic infections and can be mobilized to kill tumor cells. This discovery offers a strategy that will allow for the design of drugs to modulate the immune system. It’s a new way to look at drug design.”

Shuai and his colleagues discovered the PIAS1 anti-inflammatory pathway, a pathway commonly used by a wide variety of stimulants that regulate immune system response and trigger inflammation. While inflammation is part of the body's natural defense system against infection, Shuai said, unbalanced inflammation can make people more vulnerable to diseases such as cancer.

The PIAS1 pathway serves as the Yin to the inflammation triggering Yang, working to keep a healthy balance in the immune system. Upon a bacterial or viral challenge to the body, important immune regulatory genes are turned on in the nucleus of cells to fight infections. Shuai and his team discovered that PIAS1 is switched on to block the production of immune regulatory genes, resulting in the prevention of excessive inflammatory responses.

In cancer, the immune system can be mobilized to kill tumor cells, for example, the development of anti-tumor vaccines. In this case, a drug deactivating the PIAS1 pathway could be developed to boost the immune system to fight cancer. In addition, such a drug may be potentially useful for combating viral diseases such as HIV, Shuai said.

Shuai’s research team next plans to investigate strategies such as using small chemical molecules that can target the PIAS1 signaling pathway for the treatment of cancer and other inflammatory disorders.

Source: University of California - Los Angeles

Explore further: Laser therapy on the repair of a large-gap transected sciatic nerve in a reinforced nerve conduit

add to favorites email to friend print save as pdf

Related Stories

FX says overnight ratings becoming meaningless

13 minutes ago

(AP)—It's a rite nearly as old as television: the morning after a new show premieres, network executives wait impatiently for the Nielsen company's estimate of how many people watched, and rush to report ...

Unleashing the power of quantum dot triplets

57 minutes ago

Quantum computers have yet to materialise. Yet, scientists are making progress in devising suitable means of making such computers faster. One such approach relies on quantum dots—a kind of artificial atom, ...

Recommended for you

One route to malaria drug resistance found

1 hour ago

Researchers have uncovered a way the malaria parasite becomes resistant to an investigational drug. The discovery, at Washington University School of Medicine in St. Louis, also is relevant for other infectious ...

Protein therapy successful in treating injured lung cells

1 hour ago

Cardiovascular researchers at The Ohio State University Wexner Medical Center have successfully used a protein known as MG53 to treat acute and chronic lung cell injury. Additionally, application of this protein proved to ...

User comments : 0