Dirty snow may warm Arctic as much as greenhouse gases

Jun 06, 2007
Dirty snow may warm Arctic as much as greenhouse gases
Annual mean temperature change due to dirty snow in degrees Celsius. Credit: University of California - Irvine

The global warming debate has focused on carbon dioxide emissions, but scientists at UC Irvine have determined that a lesser-known mechanism -- dirty snow -- can explain one-third or more of the Arctic warming primarily attributed to greenhouse gases.

Snow becomes dirty when soot from tailpipes, smoke stacks and forest fires enters the atmosphere and falls to the ground. Soot-infused snow is darker than natural snow. Dark surfaces absorb sunlight and cause warming, while bright surfaces reflect heat back into space and cause cooling.

“When we inject dirty particles into the atmosphere and they fall onto snow, the net effect is we warm the polar latitudes,” said Charlie Zender, associate professor of Earth system science at UCI and co-author of the study. “Dark soot can heat up quickly. It’s like placing tiny toaster ovens into the snow pack.”

The study appears this week in the Journal of Geophysical Research.

Dirty snow has had a significant impact on climate warming since the Industrial Revolution. In the past 200 years, the Earth has warmed about .8 degree Celsius. Zender, graduate student Mark Flanner, and their colleagues calculated that dirty snow caused the Earth’s temperature to rise .1 to .15 degree, or up to 19 percent of the total warming.

In the past two centuries, the Arctic has warmed about 1.6 degrees. Dirty snow caused .5 to 1.5 degrees of warming, or up to 94 percent of the observed change, the scientists determined.

The amount of warming by dirty snow varied from year to year, with higher temperatures in years with many forest fires. Greenhouse gases, which trap outgoing energy, are primarily responsible for the remaining temperature increase and are considered the Earth’s most important overall climate changing mechanism. Other human influences on Arctic climate change are particles in the atmosphere, including soot; clouds; and land use.

Humans create the majority of airborne soot through industry and fuel combustion, while forest and open-field fires account for the rest. Because of human activity, greenhouse gas levels have increased by one-third in the last two centuries.

“A one-third change in concentration is huge, yet the Earth has only warmed about .8 degrees because the effect is distributed globally,” Zender said. “A small amount of snow impurities in the Arctic have caused a significant temperature response there.”

Previous studies have analyzed dirty snow’s effect on climate, but this is the first to take into account realistic emissions from forest fires in the Northern Hemisphere and how warming affects the thickness of the snow pack.

In some polar areas, impurities in the snow have caused enough melting to expose underlying sea ice or soil that is significantly darker than the snow. The darker surfaces absorb sunlight more rapidly than snow, causing additional warming. This cycle causes temperatures in the polar regions to rise as much as 3 degrees Celsius during some seasons, the scientists say.

“Once the snow is gone, the soot that caused the snow to melt continues to have an effect because the ground surface is darker and retains more heat,” Zender said.

Dirty snow is prevalent in East Asia, Northern Europe and Northeastern United States.

Zender believes policymakers could use these research results to develop regulations to mitigate global warming. Limiting industrial soot emissions and switching to cleaner-burning fuels would leave snow brighter, he says. New snow falls each year, and if it contained fewer impurities, the ground would brighten and temperatures would cool. Carbon dioxide lives in the atmosphere for a century, so cutting back on emissions can prevent further warming but does not produce immediate cooling.

Source: University of California - Irvine

Explore further: Biology trumps chemistry in open ocean

add to favorites email to friend print save as pdf

Related Stories

Lake Erie: Warmest in summer, coldest in winter

Sep 17, 2013

When it's 20 below, Dr. Michael Twiss, professor at Clarkson University, has been known to clear the snow and lie down on the thick ice of a frozen lake and stare up at the Northern Lights. But for all his ...

Soot packs a punch on Tibetan Plateau's climate

Mar 03, 2011

(PhysOrg.com) -- In some cases, soot – the fine, black carbon silt that is released from stoves, cars and manufacturing plants – can pack more of a climatic punch than greenhouse gases, according ...

Recommended for you

Better forecasts for sea ice under climate change

1 hour ago

University of Adelaide-led research will help pinpoint the impact of waves on sea ice, which is vulnerable to climate change, particularly in the Arctic where it is rapidly retreating.

"Ferrari of space' yields best map of ocean currents

9 hours ago

A satellite dubbed the "Ferrari of space" has yielded the most accurate model of ocean circulation yet, boosting understanding of the seas and a key impact of global warming, scientists said Tuesday.

Researcher studies deformation of tectonic plates

12 hours ago

Sean Bemis put his hands together side by side to demonstrate two plates of the earth's crust with a smooth boundary running between them. But that boundary is not always smooth and those plates do not always ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.