Students take Porsche to electric avenue

Jun 06, 2007
Students take Porsche to electric avenue
Left to right: Gerardo Lao, grad student in material science, Emmanuel Sin, mechanical engineering senior, Ryan King, mechanical engineering sophomore, Jeremy Kuenpel, freshman in mechanical engineering, Craig Wildman, graduate student in mechanical engineering team around the porsche in Sloan Automotive Lab. They are installing batteries in the front trunk compartment of the vehicle. Photo / Donna Coveney

For the past six months a team of MIT students has spent hundreds of hours--many late at night--converting a sleek Porsche 914 into an electric vehicle. Their goal? To demonstrate the viability of advanced electric vehicle technology and to help clarify what research and development has yet to be done.

The Porsche was donated by Professor Yang Shao-Horn of mechanical engineering, who with her husband, Quinn Horn, bought it off eBay and made it available to students interested in converting it to an electric-powered vehicle.

In addition to providing an unusual opportunity for hands-on learning, the project will ultimately yield information valuable to Shao-Horn's research on advanced batteries. Specifically, she and her team in the Electrochemical Energy Laboratory will be able to measure the conditions that batteries encounter inside an operating vehicle.

"In the laboratory we work on materials to make batteries safer, last longer and have higher energy," she said. "But we are also interested in gaining a good perspective on the system view. What's involved in building an electric vehicle, and what's required of the batteries?"

The student project took off a year ago when Valence Technology, Inc., agreed to donate 18 high-tech rechargeable batteries valued at $2,030 each, plus a battery-management system. While today's electric cars generally operate on conventional lead-acid batteries, Valence provided its enabling lithium phosphate rechargeable batteries, which are lighter, last longer, charge up faster, have a longer lifetime and don't pose a safety risk.

Leading the assembly team in the Sloan Automotive Laboratory is senior Emmanuel Sin, who was awarded the Peter Griffith Prize for an "outstanding experimental project and thesis" by the Department of Mechanical Engineering in May.

Sin's main collaborators on the project are sophomore Ryan King of mechanical engineering; freshman Jeremy Kuempel; graduate student Gerardo Jose la O', who initiated the project; and graduate student David Danielson, who obtained funding for supplies and tools from Maniv Energy Capital, LLC. Both la O' and Danielson are in the Department of Materials Science and Engineering.

To make the conversion, the students replaced the original engine with an electric motor, 12 of the batteries, the battery-management system, various relays and a controller that makes all the components work together. Things haven't always gone smoothly. "There's been a lot of adapting things that don't work as they're designed," said King. "We had to come up with some creative solutions."

In the next few weeks they hope to put the Porsche through its paces. For example, they'll determine its acceleration and top speed and will see how far it will go on a single charge.

According to their best estimates, the car should produce 50 to 60 horsepower and have a top speed of 70 to 100 mph. Plugging it into a wall socket should fully recharge the batteries in four to five hours, and it should then go 100 miles or more before it needs recharging.

Source: MIT

Explore further: Lifting the brakes on fuel efficiency

add to favorites email to friend print save as pdf

Related Stories

A homemade solar lamp for developing countries

Apr 14, 2014

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...

New battery technology employs multifunctional materials

Mar 26, 2014

Lithium-ion batteries power a vast array of modern devices, from cell phones, laptops, and laser pointers to thermometers, hearing aids, and pacemakers. The electrodes in these batteries typically comprise ...

Rain used to illuminate low income homes

Mar 25, 2014

By collecting rainwater, students of the Technological University of Mexico (UNITEC) were able to generate electricity using a microturbine and supplying the vital liquid to homes in a poor community in Iztapalapa, ...

Nanotube coating helps shrink mass spectrometers

Mar 25, 2014

Nanotechnology is advancing tools likened to Star Trek's "tricorder" that perform on-the-spot chemical analysis for a range of applications including medical testing, explosives detection and food safety.

Engineering team designs 'living materials'

Mar 23, 2014

Inspired by natural materials such as bone—a matrix of minerals and other substances, including living cells—MIT engineers have coaxed bacterial cells to produce biofilms that can incorporate nonliving ...

Recommended for you

Lifting the brakes on fuel efficiency

Apr 18, 2014

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

A homemade solar lamp for developing countries

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...