Origins of nervous system found in genes of sea sponge

Jun 06, 2007

Scientists at the University of California, Santa Barbara have discovered significant clues to the evolutionary origins of the nervous system by studying the genome of a sea sponge, a member of a group considered to be among the most ancient of all animals.

The findings are published in the June 6 issue of the journal PLoS ONE, a Public Library of Science journal.

“It turns out that sponges, which lack nervous systems, have most of the genetic components of synapses,” said Todd Oakley, co-author and assistant professor in the Department of Ecology, Evolution and Marine Biology at UC Santa Barbara.

“Even more surprising is that the sponge proteins have ‘signatures’ indicating they probably interact with each other in a similar way to the proteins in synapses of humans and mice,” said Oakley. “This pushes back the origins of these genetic components of the nervous system to at or before the first animals –– much earlier than scientists had previously suspected.”

When analyzing something as complex as the nervous system, it is difficult to know where to begin, explained Ken Kosik, senior author and co-director of UCSB’s Neuroscience Research Institute, who holds the Harriman Chair in Neuroscience Research.

The first neurons and synapses appeared over 600 million years ago in “cnidarians,” creatures known today as hydra, sea anemones, and jellyfish. By contrast, sponges, the oldest known animal group with living representatives, have no neurons or synapses. They are very simple animals with no internal organs.

“We look at the evolutionary period between sponges and cnidarians as the period when the nervous system came into existence, about 600 million years ago,” said Kosik.

He explained that the research group made a list of all the genes expressed in a synapse in humans, since synapses epitomize the nervous system. Synapses are involved in cell communication, learning, and memory. Next, the researchers looked to see if any of the synapse genes were present in the sponge.

“That was when the surprise hit,” said Kosik. “We found a lot of genes to make a nervous system present in the sponge.” The research team also found evidence to show that these genes were working together in the sponge. The way two of the proteins interact, and their atomic structure, bear resemblance to the human nervous system.

“We found this mysterious unknown structure in the sponge, and it is clear that evolution was able to take this entire structure, and, with small modifications, direct its use toward a new function,” said Kosik. “Evolution can take these ‘off the shelf’ components and put them together in new and interesting ways.”

The article can be found at www.plosone.org/doi/pone.0000506.

Source: University of California - Santa Barbara

Explore further: Unique sense of 'touch' gives a prolific bacterium its ability to infect anything

add to favorites email to friend print save as pdf

Related Stories

Study helps to explain how C. elegans worm turns

Apr 02, 2013

New research by scientists at the University of Massachusetts Medical School shows at the single cell level how an external stimulus sets off a molecular chain reaction in the transparent roundworm C. elegans, a proc ...

The self-made eye: Formation of optic cup from ES cells

Apr 06, 2011

Groundbreaking research from the RIKEN Center for Developmental Biology (CDB) shows how mouse stem cells spontaneously form into optic cups, the precursors of eyes. A report on this research, published this week in Nature, sheds ...

Recommended for you

Evolution: The genetic connivances of digits and genitals

2 hours ago

During the development of mammals, the growth and organization of digits are orchestrated by Hox genes, which are activated very early in precise regions of the embryo. These "architect genes" are themselves regulated by ...

Study: Volunteering can help save wildlife

3 hours ago

Participation of non-scientists as volunteers in conservation can play a significant role in saving wildlife, finds a new scientific research led by Duke University, USA, in collaboration with Wildlife Conservation ...

Researchers unwind the mysteries of the cellular clock

4 hours ago

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.