UW astronomer hits cosmic paydirt with Stardust

Jan 18, 2006
UW astronomer hits cosmic paydirt with Stardust
In an experiment using a special air gun, particles were shot into aerogel at high velocities. This closeup shows particles captured in aerogel. The particles leave a carrot-shaped trail in the aerogel. NASA/Jet Propulsion Laboratory

Scientists at the Johnson Space Center in Houston were excited and awed Tuesday by what they saw when the sample-return canister from the Stardust spacecraft was opened.

"It exceeds all expectations," said Donald Brownlee, a University of Washington astronomy professor who is principal investigator, or lead scientist, for Stardust. "It's a huge success. We can see lots of impacts. There are big ones, there are small ones."

Stardust returned to Earth in a spectacular re-entry early Sunday after a 7-year mission to collect particles from comet Wild 2 and samples of interstellar dust streaming into our solar system from other parts of the galaxy. The comet dates from the formation of the solar system 4.6 billion years ago.

Brownlee calculated there might be more than a million microscopic specks of dust embedded in Stardust's aerogel collector. Aerogel, a remarkable material that is as much as 99.9 percent empty space, greatly reduced the stress of impact on the particles, he said. The carrot-shaped tracks of much larger particles are visible in the aerogel from several feet away, Brownlee said, and in some of the tracks the black comet dust is visible at the end of the track. One track, he said, "is almost large enough to put your little finger into it."

Scientists will search the aerogel grid for dust samples, and more than 65,000 people have signed up to help in a project called Stardust@home, in which their home computers will examine images of tiny sections of the aerogel grid looking for dust particles.

The Johnson Space Center will be the curator of the Stardust samples, and as many as 150 scientists worldwide are waiting to study them.

"Stardust is a phenomenal success," Brownlee said.

Stardust on the Web:
stardust.jpl.nasa.gov
www.nasa.gov/stardust

Source: University of Washington

Explore further: Lunar explorers will walk at higher speeds than thought

add to favorites email to friend print save as pdf

Related Stories

Mysteries of space dust revealed

Aug 29, 2014

The first analysis of space dust collected by a special collector onboard NASA's Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks open a door to studying the origins of the ...

Seven samples from the solar system's birth

Apr 28, 2014

At this year's Lunar and Planetary Science Conference (LPSC), scientists reported that, after eight painstaking years of work, they have retrieved seven particles of interstellar dust from NASA's Stardust ...

Comet Wild2: First evidence of space weathering

Mar 27, 2012

(PhysOrg.com) -- The traditional picture of comets as cold, icy, unchanging bodies throughout their history is being reappraised in the light of analyses of dust grains from Comet Wild2. A team led by the ...

Recommended for you

Lunar explorers will walk at higher speeds than thought

7 hours ago

Anyone who has seen the movies of Neil Armstrong's first bounding steps on the moon couldn't fail to be intrigued by his unusual walking style. But, contrary to popular belief, the astronaut's peculiar walk ...

Space: The final frontier... open to the public

8 hours ago

Historically, spaceflight has been reserved for the very healthy. Astronauts are selected for their ability to meet the highest physical and psychological standards to prepare them for any unknown challenges. However, with ...

NASA releases IRIS footage of X-class flare (w/ Video)

8 hours ago

On Sept. 10, 2014, NASA's newest solar observatory, the Interface Region Imaging Spectrograph, or IRIS, mission joined other telescopes to witness an X-class flare – an example of one of the strongest solar flares—on ...

NASA's Maven spacecraft reaches Mars this weekend

9 hours ago

Mars, get ready for another visitor or two. This weekend, NASA's Maven spacecraft will reach the red planet following a 10-month journey spanning 442 million miles (711 million kilometers).

User comments : 0