UW astronomer hits cosmic paydirt with Stardust

Jan 18, 2006
UW astronomer hits cosmic paydirt with Stardust
In an experiment using a special air gun, particles were shot into aerogel at high velocities. This closeup shows particles captured in aerogel. The particles leave a carrot-shaped trail in the aerogel. NASA/Jet Propulsion Laboratory

Scientists at the Johnson Space Center in Houston were excited and awed Tuesday by what they saw when the sample-return canister from the Stardust spacecraft was opened.

"It exceeds all expectations," said Donald Brownlee, a University of Washington astronomy professor who is principal investigator, or lead scientist, for Stardust. "It's a huge success. We can see lots of impacts. There are big ones, there are small ones."

Stardust returned to Earth in a spectacular re-entry early Sunday after a 7-year mission to collect particles from comet Wild 2 and samples of interstellar dust streaming into our solar system from other parts of the galaxy. The comet dates from the formation of the solar system 4.6 billion years ago.

Brownlee calculated there might be more than a million microscopic specks of dust embedded in Stardust's aerogel collector. Aerogel, a remarkable material that is as much as 99.9 percent empty space, greatly reduced the stress of impact on the particles, he said. The carrot-shaped tracks of much larger particles are visible in the aerogel from several feet away, Brownlee said, and in some of the tracks the black comet dust is visible at the end of the track. One track, he said, "is almost large enough to put your little finger into it."

Scientists will search the aerogel grid for dust samples, and more than 65,000 people have signed up to help in a project called Stardust@home, in which their home computers will examine images of tiny sections of the aerogel grid looking for dust particles.

The Johnson Space Center will be the curator of the Stardust samples, and as many as 150 scientists worldwide are waiting to study them.

"Stardust is a phenomenal success," Brownlee said.

Stardust on the Web:
stardust.jpl.nasa.gov
www.nasa.gov/stardust

Source: University of Washington

Explore further: The source of the sky's X-ray glow

add to favorites email to friend print save as pdf

Related Stories

Seven samples from the solar system's birth

Apr 28, 2014

At this year's Lunar and Planetary Science Conference (LPSC), scientists reported that, after eight painstaking years of work, they have retrieved seven particles of interstellar dust from NASA's Stardust ...

Comet Wild2: First evidence of space weathering

Mar 27, 2012

(PhysOrg.com) -- The traditional picture of comets as cold, icy, unchanging bodies throughout their history is being reappraised in the light of analyses of dust grains from Comet Wild2. A team led by the ...

Stardust spacecraft may have found cosmic dust

Mar 08, 2010

(PhysOrg.com) -- The first specks of interstellar dust may have been found by NASA's Stardust spacecraft during its seven-year-long voyage. Interstellar dust is believed to form from gas ejected from stars, ...

Recommended for you

The source of the sky's X-ray glow

17 hours ago

In findings that help astrophysicists understand our corner of the galaxy, an international research team has shown that the soft X-ray glow blanketing the sky comes from both inside and outside the solar system.

End dawns for Europe's space cargo delivery role

Jul 27, 2014

Europe will close an important chapter in its space flight history Tuesday, launching the fifth and final robot ship it had pledged for lifeline deliveries to the International Space Station.

Giant crater in Russia's far north sparks mystery

Jul 26, 2014

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

Jul 26, 2014

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Bacteria manipulate salt to build shelters to hibernate

Jul 25, 2014

For the first time, Spanish researchers have detected an unknown interaction between microorganisms and salt. When Escherichia coli cells are introduced into a droplet of salt water and is left to dry, b ...

How do we terraform Venus?

Jul 25, 2014

It might be possible to terraform Venus some day, when our technology gets good enough. The challenges for Venus are totally different than for Mars. How will we need to fix Venus?

User comments : 0