Stanford researchers find stem cells in colorectal tumors

Jun 04, 2007

Researchers at the Stanford University School of Medicine have identified the cancer stem cells that propagate tumors in colon and rectal cancer, a discovery that could lead to improved treatment of this deadly cancer.

These are the latest class of cancer stem cells tracked down by a large, interdisciplinary group of researchers led by Michael Clarke, MD. The discovery is reported in the June 4 advance online edition of the Proceedings of the National Academy of Sciences.

"This work will enable us to better understand how to identify these cells, and to do molecular studies to find potential new therapies," said Clarke, the senior author of the paper and the Karel H. and Avice N. Beekhuis Professor in Cancer Biology.

Clarke was the first to find cancer stem cells in a solid tumor - in this case, breast cancer - in 2003 while working at the University of Michigan. Since coming to Stanford in 2005, he joined existing efforts that have resulted in finding cancer stem cells in head and neck, pancreatic and now colorectal tumors.

These stem cells act like a spring at the source of a creek, constantly dividing to produce new tumor cells. Although the other tumor cells can divide and cause damage through their sheer bulk, they are shorter lived and can't maintain the tumor's growth. The cancer stem cells are also likely to be responsible when tumors spread to distant sites.

Identifying new cancer stem cells has been a major push within Stanford's Institute for Stem Cell Biology and Regenerative Medicine, where Clarke serves as associate director. Irving Weissman, MD, director of the institute, said he hopes Stanford researchers will develop cancer therapies that specifically kill these cancer stem cells, eradicating the cancer entirely. Current therapies may kill the bulk of the tumor cells, but if any cancer stem cells remain the tumor will resurface or spread.

"We have brought together a team of scientists and clinicians who will help find the weak points in cancer, devise new immune and molecular diagnostics and therapeutics, test them in mice that carry the cancer stem cells and, hopefully, in a few years begin to test them in our patients," Weissman said.

The colorectal cancer stem cells highlight the importance of a protein that is a familiar face to this group of cancer researchers. A protein called CD44 that has already been found dotting the surface of both breast and head and neck cancer stem cells also turns up on the colorectal cancer stem cells. To Piero Dalerba, MD, postdoctoral scholar and first author of the paper, that finding could simply reflect the fact that all of those tumors arise from similar tissue. It could also mean that a similar therapy could target all three cell types.

Dalerba also found a novel protein on the colorectal cancer stem cells, called CD166, that had not previously been associated with cancer stem cells. "This is one of the major novelties of this paper," he said. This protein could be a unique target for identifying and treating colorectal cancers.

Colon and rectal cancers are the second-most common cause of cancer-related deaths in the United States, killing more than 50,000 people each year. The tumors often go undetected until they are at a later stage and are difficult to treat. Treatment can include chemotherapy, radiation or surgery. However, Andrew Shelton, MD, assistant professor of surgery who treats colon cancer patients and participated in this study, said it's often hard to know which patients will respond best to the different treatment options.

Shelton said that grouping patients according to the treatments most likely to work for them is one possible future benefit of finding the cancer stem cells. In breast cancer, Clarke and another team of researchers recently found a group of genes that show unique patterns of being turned on or off in people who either do or don't respond well to treatment. The group hopes to do similar work with the colorectal cancer stem cells as a first step in identifying patients who may need more aggressive treatment.

Source: Stanford University

Explore further: Preventing cancer from forming 'tentacles' stops dangerous spread

add to favorites email to friend print save as pdf

Related Stories

Venom gets good buzz as potential cancer-fighter

Aug 11, 2014

Bee, snake or scorpion venom could form the basis of a new generation of cancer-fighting drugs, scientists will report here today. They have devised a method for targeting venom proteins specifically to malignant cells while ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

Biology made simpler with "clear" tissues

Aug 04, 2014

(Phys.org) —In general, our knowledge of biology—and much of science in general—is limited by our ability to actually see things. Researchers who study developmental problems and disease, in particular, ...

Illuminating the dark side of the genome

Jul 29, 2014

Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed. In fact, repeats are discarded in most genome-wide studies and thus, insights into this part ...

Recommended for you

Discovery could lead to new cancer treatment

14 hours ago

A team of scientists from the University of Colorado School of Medicine has reported the breakthrough discovery of a process to expand production of stem cells used to treat cancer patients. These findings could have implications ...

Is the HPV vaccine necessary?

20 hours ago

As the school year starts in full swing many parents wonder if their child should receive the HPV vaccine, which is recommended for girls ages 11-26 and boys 11-21. There are a lot of questions and controversy around this ...

User comments : 0