Diagnosing skin cancers with light, not scalpels

Jun 04, 2007

In an early step toward nonsurgical screening for malignant skin cancers, Duke University chemists have demonstrated a laser-based system that can capture three-dimensional images of the chemical and structural changes under way beneath the surface of human skin.

"The standard way physicians do a diagnosis now is to cut out a mole and look at a slice of it with a microscope," said Warren Warren, the James B. Duke Professor of chemistry, radiology and biomedical engineering, and director of Duke's new Center for Molecular and Biomedical Imaging. "What we're trying to do is find cancer signals they can get to without having to cut out the mole.

"This is the first approach that can target molecules like hemoglobin and melanin and get microscopic resolution images the equivalent of what a doctor would see if he or she were able to slice down to that particular point," Warren said.

The distributions of hemoglobin, a component of red blood cells, and melanin, a skin pigment, serve as early warning signs for skin cancer growth. But because skin scatters light strongly, simple microscopes cannot be used to locate those molecules except right at the surface. Although laser methods have been developed to probe deeper down for some other molecules that can be made to glow, both melanin and hemoglobin remain dark and inaccessible using those methods.

Warren's group has now developed a technology for coaxing both hemoglobin and melanin inside questionable skin moles to emit light by exciting them with highly controlled laser pulses.

The innovation uses a delicate interplay between two laser beams, each emitting a different color of light. To keep the skin from overheating in the process, the lasers must also be able to pulse on for only femtoseconds -- a thousand trillionths of a second -- at a time.

The glow of the hemoglobin- and melanin-bearing structures can be magnified by a microscope outside the skin and manipulated by computers to create cellular-scale images. The noninvasive technique could enable doctors to see as much as a millimeter below the skin's surface -- more than enough for diagnosis, Warren said.

"What this is leading to is for a doctor to be able to touch a mole with a fiberoptic cable and characterize what is going on inside it," he said.

"Today, if you visit a dermatologist, he or she will probably see many moles on your body. But the difficulty is trying to figure out which of those, if any, are dangerous."

Warren's group demonstrated at a March conference of the American Physical Society how the technique can visualize melanin from inside an excised human melanoma.

In May, at an international conference on laser advances, the team made a similar presentation on visualizing hemoglobin in blood vessels within mouse skin cells.

Warren said his team is now working with James Grichnik, an assistant professor in the Duke Medical Center's dermatology and cell biology departments, to begin testing the technology in the clinic.

"We have proposals pending for developing a compact laser system that could be sitting in a dermatologist's office here at Duke within three years where we could actually have the first human demonstrations," Warren said.

Source: Duke University

Explore further: Tailor-made cancer treatments? New cell culture technique paves the way

add to favorites email to friend print save as pdf

Related Stories

Fingers pointed as climate talks deadlock

2 hours ago

Accusations flew at deadlocked UN climate talks in Lima on Saturday, as the United States warned that failure to compromise could doom the 22-year-old global forum.

Fun cryptography app pleases students and teachers

12 hours ago

Up on Google Play this week is Cryptoy...something that you might want to check out if you or someone you know wishes entry into the world of cryptography via an educational and fun app. You learn more about ciphers and keys; you ...

Recommended for you

Specific oxidation regulates cellular functions

30 minutes ago

For a long time, hydrogen peroxide has been considered as a dangerous metabolite that can damage cells through oxidation. This, however, is not its only role in the cell. Scientists from the German Cancer Research Center ...

New disease mechanism discovered in lymphoma

55 minutes ago

Programmed cell death is a mechanism that causes defective and potentially harmful cells to destroy themselves. It serves a number of purposes in the body, including the prevention of malignant tumor growth. ...

Researcher to cancer: 'Resistance will be futile'

8 hours ago

Turning the tables, Katherine Borden at the University of Montreal's Institute for Research in Immunology and Cancer (IRIC) has evoked Star Trek's Borg in her fight against the disease. "Cancer cells rapidly ...

How does prostate cancer form?

10 hours ago

Prostate cancer affects more than 23,000 men this year in the USA however the individual genes that initiate prostate cancer formation are poorly understood. Finding an enzyme that regulates this process ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.