New study finds water deeper in Earth than scientists previously believed

November 21, 2016
FSU Assistant Professor of Geology Mainak Mookherjee reports that water exists far deeper in the Earth than scientists previously thought. Credit: Bruce Palmer/Florida State University

A mineral far below the Earth's surface may hold the key to how much water is stored in the planet, a Florida State University researcher says.

In a paper published this week in the Proceedings of the National Academy of Sciences, FSU Assistant Professor of Geology Mainak Mookherjee reports that water exists far deeper in the Earth than scientists previously thought.

Mookherjee and Andreas Hermann from the University of Edinburgh estimate that in the deep Earth—roughly 400 to 600 kilometers into the mantle—water is stored and transported through a high-pressure polymorph of the mineral brucite.

Previously, scientists thought brucite was not thermodynamically stable that deep in the Earth. "This opens up a Pandora's Box for us," Mookherjee said.

"We didn't think water could be stored by hydrous minerals such as brucite. But now that we know it's there, we need to figure out how much water could be effectively stored inside it."

Based on high-pressure experimental studies, scientists knew minerals that transported water—such as brucite—had limited stability and that these minerals decomposed in the deep Earth. As they decomposed, they released the water, which is recycled back to surface via volcanic activity.

But this discovery of a new high-pressure phase of brucite indicates that water could be efficiently transported to far deeper realms without decomposition.

"We had to do quantum-mechanical calculations on thousands of potential structures until we found the one we now reported," Hermann said. "It really is remarkable that such a well-studied mineral as brucite has something so surprising to offer."

Water plays a critical role in sustaining geological activity below the Earth's surface. Scientists have been working for years to quantify the oceans' worth of water that lay hidden in the crust and mantle.

"For the activity of the planet, deep Earth water is equally important to water on the surface," Mookherjee said. "My goal is to understand how much water is stored in the deep Earth. If the planet becomes dry on the inside, the planet dies because geodynamic activity within the planet ceases."

Mookherjee said he and Hermann plan to follow up on this paper with additional simulations to better understand the physical properties of brucite at that depth and try to decipher the amount of that is potentially stored in the deep Earth along the cold-subduction zones.

Explore further: Geologists explore minerals below Earth's surface

More information: High-pressure phase of brucite stable at Earth's mantle transition zone and lower mantle conditions, www.pnas.org/cgi/doi/10.1073/pnas.1611571113

Related Stories

Geologists explore minerals below Earth's surface

October 13, 2016

A Florida State University geology researcher is going deep below the Earth's surface to understand how some of the most abundant minerals that comprise the Earth's crust change under pressure.

Is there an ocean beneath our feet?

January 27, 2014

(Phys.org) —Scientists at the University of Liverpool have shown that deep sea fault zones could transport much larger amounts of water from the Earth's oceans to the upper mantle than previously thought.

Recommended for you

Gravity sensors might offer earlier warning of earthquakes

November 23, 2016

(Phys.org)—A team of researchers from France, the U.S. and Italy has found evidence from the Tohoku-Oki earthquake that sensors that measure changes in gravity might offer a way to warn people of impending disaster faster ...

Study sheds new insights into global warming 'hiatus'

November 22, 2016

A new study of the temporary slowdown in the global average surface temperature warming trend observed between 1998 and 2013 concludes the phenomenon represented a redistribution of energy within the Earth system, with Earth's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.