New terahertz source could strengthen sensing applications

March 28, 2016
The design of Razeghi's terahertz tuning source.

Current terahertz sources are large, multi-component systems that sometimes require complex vacuum systems, external pump lasers, and even cryogenic cooling. The unwieldy devices are heavy, expensive, and hard to transport, operate, and maintain.

Now Northwestern University's Manijeh Razeghi has developed a new type of security detection device that bypasses these issues. With the ability to detect explosives, chemical agents, and dangerous biological substances from safe distances, the device could make public spaces more secure than ever.

"A single-component solution capable of continuous wave and widely frequency tunable operation is highly desirable to enable next generation terahertz systems," said Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science in Northwestern's McCormick School of Engineering.

Director of Northwestern's Center for Quantum Devices, Razeghi and her team have demonstrated a room temperature continuous wave, highly tunable, high-power terahertz source. Based on nonlinear mixing in , the source can emit up to multi-milliwatts of power and has a wide frequency coverage of one-to-five terahertz in pulsed mode operation.

Funded by the National Science Foundation, Department of Homeland Security, Naval Air Systems Command, and NASA, the research was published on March 25 in Nature Scientific Reports. This new research builds on Razeghi group's many years of research with Northwestern's Center for Quantum Devices, including the development of the first single mode room temperature terahertz laser in 2011.

"I am very excited about these results," Razeghi said. "No one would believe any of this was possible, even a couple years ago. This initial demonstration was very exciting, and continuing developing will lead us to the new frontier of ."

Explore further: New terahertz device could strengthen security

More information: Quanyong Lu et al. Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers, Scientific Reports (2016). DOI: 10.1038/srep23595

Related Stories

New terahertz device could strengthen security

November 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

Continuous terahertz sources demonstrated at room temperature

June 5, 2014

Imagine a technology that could allow us to see through opaque surfaces without exposure to harmful x-rays, that could give us the ability to detect harmful chemicals and bio-agents from a safe distance, and that could enable ...

Single-chip laser delivers powerful result

January 7, 2016

From their use in telecommunication to detecting hazardous chemicals, lasers play a major role in our everyday lives. They keep us connected, keep us safe, and allow us to explore the dark corners of the universe.

Recommended for you

High-precision magnetic field sensing

December 2, 2016

Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields. The sensor may find widespread use in medicine and other areas.

LIGO back online, ready for more discoveries

December 1, 2016

Today (November 30), scientists restarted the twin detectors of LIGO, the Laser Interferometer Gravitational-wave Observatory, after making several improvements to the system. Over the last year, they have made enhancements ...

A friend of a friend is... a dense network

December 1, 2016

It's a familiar request in the digital age: one of your friends on social media has a friend who wants to be your friend. Frequent linking among friends of friends can cause a rapid increase in social network connectivity.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.