Novel technique used to study graphene's response to air

March 18, 2016
Novel technique used to study graphene's response to air
Local surface potential maps for synthetic air (left) and ambient air (right), with the same relative humidity of 40%. The scan size is 6×3 micrometres squared.

An international team of scientists led by the National Physical Laboratory (NPL) has performed novel measurements of graphene's electrical response to synthetic air, exposing a distinct knowledge gap that needs to be bridged before the commercialisation of graphene-based gas sensors.

Early gas detection is crucial in many fields, including environmental protection, medical diagnosis and national defence. Graphene, the 'wonder-material' consisting of a two-dimensional layer of carbon atoms, has attracted much attention for its potential gas sensing applications.

When the surface of graphene is bared to certain chemicals, those chemicals either donate or withdraw electrons from graphene, causing a change in the electrical resistivity. Graphene is incredibly sensitive to this process, in fact it is so sensitive that just a single molecule of can cause a measureable change. A graphene-based gas sensor would use these electrical changes to detect the target chemical.

However, it is not that simple. Gas sensors need to be exposed to the environment in order to detect the target species, but graphene is sensitive to such a wide variety of chemicals that its changes significantly in alone. This makes it difficult to differentiate between the changes that are caused by the target gas and those caused by the natural environment.

In a new study, a group of scientists from NPL, Chalmers University of Technology and the US Naval Research Laboratory have used a novel technique to examine the effects of ambient air on graphene in a controlled environment in order to characterise its response.

The researchers investigated the effects of nitrogen, oxygen, water vapour and nitrogen dioxide (in concentrations typically present in ambient air) on epitaxial graphene inside a controlled environmental chamber. All measurements were taken at NPL by applying Kelvin probe force microscopy whilst simultaneously performing transport (resistance) measurements. This novel combination gave researchers the unique ability to connect the local and global electronic properties together, a task that has proven to be difficult in the past.

The study, published in 2D Materials, experimentally showed that the combination of gases used does not fully replicate the effects of ambient air; even at concentrations higher than those found in the typical atmosphere, there is a large difference in graphene's response. This result contradicts past literature, which has mainly attributed the changes in graphene's electronic properties to these gases. And it raises the question: "What mystery chemicals are causing this significant response?"

It is clear that, while graphene-based have great potential, there is still a lot of research to be done. Further exploration is needed to find the missing link between the effects seen in controlled laboratories and the effects seen in ambient air. Researchers are also interested in studying methods to optimise the devices by narrowing the sensitivity to specific target species, such as chemical functionalisation.

Explore further: New laser -- it's a gas, gas, gas... sensor

More information: Vishal Panchal et al. Atmospheric doping effects in epitaxial graphene: correlation of local and global electrical studies, 2D Materials (2016). DOI: 10.1088/2053-1583/3/1/015006

Related Stories

New laser -- it's a gas, gas, gas... sensor

December 4, 2009

(PhysOrg.com) -- A new generation of optical sensors is enabling the development of robust, long-lasting, lighting-fast trace gas detectors for use in a wide range of industrial, security and domestic applications.

Nano-policing pollution

May 13, 2015

Pollutants emitted by factories and car exhausts affect humans who breathe in these harmful gases and also aggravate climate change up in the atmosphere. Being able to detect such emissions is a critically needed measure.

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

dirk_bruere
not rated yet Mar 18, 2016
"Ambient air" is full of biocrap

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.