Team works on reconfigurable magnetic nanopatterns

March 9, 2016

A team of international scientists led by researchers of the CUNY Advanced Science Research Center (ASRC) and the Politecnico of Milan in Italy has demonstrated a novel approach for designing fully reconfigurable magnetic nanopatterns whose properties and functionality can be programmed and reprogrammed on-demand.

The method—published in Nature Nanotechnology and led by Elisa Riedo, Professor of Physics with the ASRC's Nanoscience Initiative, and Riccardo Bertacco, a professor with the Politenico of Milan—is based on thermal scanning probe lithography and uses a hot nano-tip to perform a highly localized field heating and cooling in antiferromagnetic and ferromagnetic thin films. The hot tip is then used to align the spins in the material in any desired direction with nanoscale resolution.

"The proposed technique is straightforward and combines the full reversibility and stability of exchange bias, as the same pattern can be written and reset many times, with the resolution and versatility of scanning probe lithography," said Riedo. "In particular, this work demonstrates how thermal scanning probe lithography is gaining momentum as a key nanofabrication method for the next generation of nanodevices, from biomedical sensing to sprintronics."

This approach offers researchers the opportunity to control magnetism at the nanoscale as never before. The authors used this method to fabricate channels where spin waves can propagate. Spin waves are a propagating re-ordering of the magnetization in a material. A new generation of computing and sensing devices can be fabricated based on the propagation of spin waves instead of the more conventional electric current.

Bertacco noted these findings will allow for the development of novel metamaterials with finely-tuned magnetic properties, as well as a reconfigurable computing device architectures.

"Equally promising is the creation of structures with high response to , as they can be used as sensors in new architectures of spintronic devices," he said. "The potential target market for these devices is extremely large—especially with the advent of the age of the 'Internet of things'—in which every object has a growing need for integrated sensors and computational capacity."

Edoardo Albisetti, postdoctoral research associate at the Politecnico of Milan and the paper's first author, said the new magnetic nanostructure patterning method gives researchers an increased amount of control.

"So far, the patterning of magnetic nanostructures has been mainly achieved through irreversible structural or chemical modifications," Albisetti said. "On the contrary, by using this new thermal assisted magnetic scanning probe lithography (tam-SPL) method, the magnetic nanopatterns are fully reconfigurable and obtained without modifying the film chemistry and topography."

The ability to draw new meta-magnetic materials opens the way for the development of innovative devices for information processing based on logic cells as well as on the propagation and manipulation of in magnonic structures.

Explore further: Researchers introduce new route to thermal measurements with nanometer resolution

More information: E. Albisetti et al. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography, Nature Nanotechnology (2016). DOI: 10.1038/nnano.2016.25

Related Stories

Spinning better electronic devices

March 2, 2016

A team of researchers, led by a group at the University of California, Riverside, have demonstrated for the first time the transmission of electrical signals through insulators in a sandwich-like structure, a development ...

Researchers present new findings on magnetic spin waves

February 10, 2016

An international team of researchers gained new insights into magnetic spin waves. Spin waves can evolve in electrically non-conducting materials given a specific temperature gradient and then be converted into electrical ...

Researchers take magnetic waves for a spin

January 29, 2014

Researchers at New York University have developed a method for creating and directing fast moving waves in magnetic fields that have the potential to enhance communication and information processing in computer chips and ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.