Researchers develop supercondenser that can be charged by the sun

March 11, 2016
Heat to electricity

Researchers at the Laboratory for Organic Electronics at Linköping University, Sweden, have created a supercondenser that can be charged by the sun. It contains no expensive or hazardous materials, has patents pending, and it should be fully possible to manufacture it on an industrial scale.

In the future we could have a completely new type of energy storage, charged by energy – for example during the day when the sun shines, or by waste heat from an industrial process. The heat is converted to electricity, which can be stored until it is needed. The results have recently been published in the esteemed journal Energy Environmental Science.

Simply put, a supercondenser is energy storage: a type of battery that consists of an electrolyte of charged particles – – between two electrodes. The charge is stored next to the electrodes, most often in carbon nanotubes. One of the physical phenomena that the researchers make use of here is that if a supercapacitor is exposed to a temperature gradient – that is, one end is warm and the other cold – the ions rush towards the cold side and an electric current arises.

The thermoelectric effect is used to make electricity of heat; how much heat is converted to electricity depends both on which electrolyte is used and how great the temperature difference is.

Magnus Jonsson, Zia Ullah Kahn, Dan Zhao and Xavier Crispin

For many years, researchers at the Laboratory for Organic Electronics have experimented with fluid electrolytes consisting of ions and conductive polymers. The positively-charged ions are small and quick, while the negatively-charged polymer molecules are large and heavy. When one end is heated and the other one cooled down, the small, quick ions rush towards the cold side while the heavy polymer chains stay where they are. Since they are ions, and not electrons, they stick to the metal electrodes. The charge that then arises is stored in carbon nanotubes next to the metal electrodes, and can be discharged whenever the electricity is needed.

Postdoctoral students Dan Zhao and Hui Wang, and doctoral student Zia Ullah Khan, found the right polymers after years of fruitless experiments. They produced an electrolyte with 100 times greater ability to convert heat to electricity than the electrolytes normally used.

"We still don't know exactly why we're getting this effect. But the fact is that we can convert and store 2,500 times more energy than the best of today's supercondensers linked to thermoelectric generators," Professor Crispin says.

The electrolyte contains only non-hazardous, simple, and cheap materials that are stable and can be handled at room temperature. The ion-driven thermoelectric supercondenser therefore opens up new possibilities of storing solar , to take one example. The research has resulted in two patents; the hope is that the results will lead to an entirely new type of that can be mass-produced on an .

Since 2014, the research has been funded by the Knut and Alice Wallenberg Foundation as part of the "Tail of the Sun" research project.

Explore further: Exploring supercapacitors to improve their structure

More information: D. Zhao et al. Ionic thermoelectric supercapacitors, Energy Environ. Sci. (2016). DOI: 10.1039/C6EE00121A

Related Stories

Exploring supercapacitors to improve their structure

February 19, 2013

No matter how intimidating their name, supercapacitors are part of our daily lives. Take buses for example: supercapacitors are charged during braking, and supply electricity to open the doors when the vehicle stops. Yet ...

For batteries, one material does it all

May 4, 2015

Engineers at the University of Maryland have created a battery that is made entirely out of one material, which can both move electricity and store it.

New technique for 'seeing' ions at work in a supercapacitor

June 22, 2015

Researchers from the University of Cambridge, together with French collaborators based in Toulouse, have developed a new method to see inside battery-like devices known as supercapacitors at the atomic level. The new method ...

Novel ceramics convert wasted heat into electricity

March 1, 2016

Talia Alvarez, currently studying her doctorate at the University Of Manchester, U.K., has designed nanostructured ceramics, which are thermoelectric materials that convert the heat produced un industrial processes into electrical ...

Recommended for you

Inferring urban travel patterns from cellphone data

August 29, 2016

In making decisions about infrastructure development and resource allocation, city planners rely on models of how people move through their cities, on foot, in cars, and on public transportation. Those models are largely ...

How machine learning can help with voice disorders

August 29, 2016

There's no human instinct more basic than speech, and yet, for many people, talking can be taxing. 1 in 14 working-age Americans suffer from voice disorders that are often associated with abnormal vocal behaviors - some of ...

Sponge creates steam using ambient sunlight

August 22, 2016

How do you boil water? Eschewing the traditional kettle and flame, MIT engineers have invented a bubble-wrapped, sponge-like device that soaks up natural sunlight and heats water to boiling temperatures, generating steam ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gkam
1 / 5 (4) Mar 13, 2016
Poco a poco, petroleum fuels are dying, and coal is dead.

It is time for all of us to do our parts and clean up our acts.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.