New study pinpoints stress factor of mega-earthquake off Japan

March 2, 2016
Graphic of the gravity data off Japan where the 2011 magnitude 9 earthquake occurred. Credit: Scripps Institution of Oceanography, UC San Diego

Scripps Institution of Oceanography, UC San Diego researchers published new findings on the role geological rock formations offshore of Japan played in producing the massive 2011 Tohoku-oki earthquake, one of only two magnitude 9 mega-earthquakes to occur in the last 50 years.

The study, published in the journal Nature, offers new information about the hazard potential of large earthquakes at subduction zones, where converge.

The magnitude 9 quake, which triggered a major tsunami that caused widespread destruction along the coastline of Japan, including the Fukushima nuclear plant disaster, was atypical in that it created an unusually large seismic movement, or slip, of 50 meters (164 feet) within a relatively small rupture area along the earthquake fault.

To better understand what may have caused this large movement, Scripps researchers used gravity and topography data to produce a detailed map of the geological architecture of the seafloor offshore of Japan. The map showed that the median tectonic line, which separates two distinct rock formations, volcanic rocks on one side and metamorphic rocks on the other, extends along the seafloor offshore.

The region over the earthquake-generating portion of the plate boundary off Japan is characterized by variations in water depth and steep topographic gradients of about six kilometers (3.7 miles). These gradients, according to the researchers, can hide smaller variations in the topography and gravity fields that may be associated with geological structure changes of the overriding Japan and subducting Pacific plates.

"The new method we developed has enabled us to consider how changes in the composition of Japan's seafloor crust along the plate-boundary influences the earthquake cycle," said Dan Bassett, a postdoctoral researcher at Scripps and lead author of the study.

The researchers suggest that a large amount of stress built up along the north, volcanic rock side of the median tectonic line resulting in the earthquake's large movement. The plates on the south side of the line do not build up as much stress, and large earthquakes have not occurred there.

"There's a dramatic change in the geology that parallels the earthquake cycle," said Scripps geophysicist David Sandwell, a co-author of the study. "By looking at the structures of overriding plates, we can better understand how big the next one will be."

Explore further: Sumatra earthquake mysteries examined

More information: Dan Bassett et al, Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake, Nature (2016). DOI: 10.1038/nature16945

Related Stories

Sumatra earthquake mysteries examined

May 11, 2012

(Phys.org) -- An earthquake in the Indian Ocean off the coast of Sumatra, Indonesia on 11th April was unusually powerful, at magnitude 8.6, for a “strike-slip” type of quake, and a new analysis of the earthquake ...

Supercycles in subduction zones

May 6, 2015

When tectonic plates collide, they produce earthquakes like the recent one in Nepal. Researchers at ETH Zurich are providing new ways to explain how and why earthquake supercycles occur in zones where one plate moves under ...

Megathrust quake faults weaker and less stressed than thought

September 10, 2015

Some of the inner workings of Earth's subduction zones and their "megathrust" faults are revealed in a paper published today in the journal Science. U.S. Geological Survey scientist Jeanne Hardebeck calculated the frictional ...

Recommended for you

The sound of a healthy reef

August 26, 2016

A new study from the Woods Hole Oceanographic Institution (WHOI) will help researchers understand the ways that marine animal larvae use sound as a cue to settle on coral reefs. The study, published on August 23rd in the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.