Scientists identify structure of crucial enzyme in cell division

March 30, 2016

UT Southwestern Medical Center researchers have determined the atomic structure of an enzyme that plays an essential role in cell division, the fundamental process that occurs countless times daily in many life forms on Earth.

Understanding the structure of this enzyme, separase, could lead to better treatments for cancer, which occurs when cells divide out of control, said Dr. Hongtao Yu, Professor of Pharmacology and a Howard Hughes Medical Institute (HHMI) Investigator at UT Southwestern.

"Chromosomes contain the genetic blueprint for life, and must be precisely duplicated and equally partitioned during each . The cohesin complex forms a molecular ring to encircle the duplicated chromosomes and tether them together until the moment of chromosome separation," said Dr. Yu, senior author of the study published online in Nature. "In organisms from fungi to humans, separase - an enzyme that breaks down proteins - cleaves and opens the cohesin ring to allow chromosome separation and subsequent partition into the two new daughter cells."

Despite its central role in cell biology, the of separase has eluded scientists since its discovery nearly two decades ago. This situation left a void in the understanding of the enzyme's mechanism and regulation, the researchers said.

"We determined the atomic structure of separase from a fungus that can grow at high temperatures. The structure reveals how separase recognizes and cleaves the cohesin ring, allowing the chromosomes to separate," said Dr. Yu, a Michael L. Rosenberg Scholar in Medical Research and member of the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern. "This particular protein is very unstable in species that grow at normal temperature, such as , but was more stable in the high-temperature fungus that we studied."

Because of the enzyme's role in cell division, chemical inhibitors of separase are expected to block cell proliferation and therefore may have therapeutic value in treating cancer.

"The fungal separase that we studied is very similar to human separase. For that reason, we believe our structure will aid in the design of such inhibitors," he said, "because once you have the shape of the structure, you can computationally look for molecules that will bind to it."

Study co-authors included Dr. Zhonghui Lin, a research specialist at the HHMI and in the Department of Pharmacology, and Dr. Xuelian "Sue" Luo, Associate Professor of Pharmacology and Biophysics.

Explore further: Researchers describe the key role of a protein in the segregation of genetic material during cell division

More information: Structural basis of cohesin cleavage by separase, Nature, DOI: 10.1038/nature17402

Related Stories

New key mechanism in cell division discovered

May 18, 2012

Researchers from the Bellvitge Biomedical Research Institute (IDIBELL) have identified the mechanism by which protein Zds1 regulates a key function in mitosis, the process that occurs immediately before cell division. The ...

A skeleton for chromosomes

August 26, 2013

Researchers at the IMP Vienna discovered that cohesin stabilizes DNA. Jan-Michael Peters and his team at the Research Institute of Molecular Pathology (IMP) found that the structure of Chromosomes is supported by a kind of ...

DNA repair enzyme mapped in atomic detail

December 11, 2015

An enzyme crucial to the process of DNA repair in our cells has been mapped in atomic detail by researchers at the University of Dundee, the UK's top-rated University for Biological Sciences.

Recommended for you

Psychological science explores the minds of dogs

October 24, 2016

Dogs are one of the most common household pets in the world, so it's curious that we know relatively little about their cognitive abilities when we know so much about the abilities of other animals, from primates to cetaceans. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.