Optimized analytics reduce 'false negatives' in the detection of nanoparticles

March 23, 2016

The INM – Leibniz Institute for New Materials has joined forces with a manufacturer of analytical equipment to reduce particles losses and avoid false negatives.

Many everyday products and our environment contain , and there is increasing interest in finding them. The particles and their sizes are commonly detected using specialized analytical techniques. If nanoparticles are lost in the analytical apparatus, they are not detected, and a "false negative" result occurs. The INM – Leibniz Institute for New Materials has joined forces with a manufacturer of analytical equipment to reduce particles losses and avoid false negatives. They developed reference nanoparticles and used them to investigate how the can be improved.

In project DINAFF, researchers at INM and Superon GmbH managed to reduce the loss of nanoparticles during analysis and, therefore, to improve the limit of detection. The researchers modified the inner surface of the analytical apparatus, optimized measurement parameters such as flow speed, and tuned the surface properties of the target nanoparticles.

"We worked with so-called tracer particles for our analyses," Tobias Kraus from INM explained. "These are nanoparticles that we deliberately add to each sample. We therefore know that we should be able to find these particles in the sample. If we do not find them, something during the analysis impedes detection and causes a false negative." Parameters of the analytical method then have to be adjusted so that the tracer particles become detectable. The head of the Structure Formation group continued: "The more similar our tracer particles are to the real nanoparticles, the more reliably the real nanoparticles can be detected later."

The researchers applied the so-called AF4 Method to detect nanoparticles. In this method, nanoparticles are lost when they adhere to tubing or other internal surfaces of the apparatus and no longer arrive at the detector. Nanoparticles may also form clumps that are so large that the detector no longer responds to them. "Preventing these two main causes of false negatives requires a combination of suitable tracer particles, the right analytical method, and optimized parameters," Kraus says.

In the future, the researchers will offer their expertise in all three areas to interested parties from industry. They will provide the synthesis of tracer particles, consultation regarding analysis of the industrial partners, and particle analysis as a service at INM.

Explore further: Small clumps in the body: how nanoparticles react to proteins

Related Stories

Developing new methods to detect nanoparticles in food

July 8, 2015

The production and characterisation of reference materials to detect silver nanoparticles in meat is feasible, a recent experiment has found. Using methods developed through the NANOLYSE project, two concentrations of silver ...

Exciting silicon nanoparticles

January 27, 2016

A method to characterize and design the optical properties of silicon nanoparticles for their use on silicon chips has been developed by A*STAR researchers in collaboration with colleagues from Russia, Israel and Australia. ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.