Experimentation and largest-ever quantum simulation of a disordered system explain quantum many-particle problem

March 14, 2016 by Rick Kubetz
Figure illustrates puddles of localized quasi-condensates found using a quantum Monte Carlo simulation of trapped atoms in a disordered lattice. Individual puddles, consisting of 10-20 particles each, are incoherent relative to each other. The Bose glass is composed of these puddle-like structures. Credit: Ushnish Ray, University of Illinois

Using some of the largest supercomputers available, physics researchers from the University of Illinois at Urbana-Champaign have produced one of the largest simulations ever to help explain one of physics most daunting problems.

"This result was a fantastic collaboration between theory and experiment," explained Physics Professor Brian DeMarco, whose group led the experimental phase of the study. "One of the grandest and most impactful frontiers of is the many-particle problem. We do not understand very well what happens when many quantum particles come together and interact with each other. This problem spans some of the largest scales in the universe, like understanding the nuclear matter in neutron stars, to the smallest, such as electron transport in photosynthesis and the quarks and gluons inside a proton."

DeMarco's group experiments with atoms gases cooled to just billionths of a degree above in order to experimentally simulate models of materials such as high-temperature superconductors. In these experiments, the atoms play the role of electrons in a material, and the analog of material parameters (like disorder) are completely controlled and known and can be changed every 90-second experimental cycle. Measurements on the atoms are used to expose new physics and test theories.

"In most cases, we lack predictive power, because these problems are not readily computable—a classical computer requires exponentially costly resources to simulate many quantum systems," added David Ceperley, a professor of physics whose team developed the companion simulation. "A key example of this problem with practical challenges lies with materials such as . Even armed with the chemical composition and structure of these materials, it is almost impossible to predict today at what temperature they will super-conduct."

The different approaches to attacking a particularly important quantum many-particle problem by DeMarco's and Ceperley's groups came together in a new result published in Nature Physics. In their paper, "Probing the Bose glass-superfluid transition using quantum quenches of disorder," Carolyn Meldgin from DeMarco's group and Ushnish Ray from Ceperley's team share a new understanding of how disorder in a quantum material gives rise to an exotic quantum state called a Bose glass.

"A Bose glass is a strange and poorly understood insulator that can occur when disorder is added to a superfluid or superconductor," Meldgin said. In her experiments, Meldgin was able to use optical disorder to induce a Bose glass, and Ray exactly simulated the experiment using the Titan supercomputer.

In this work, Ceperley's group achieved the largest scale computer simulations possible of a disordered quantum many-particle system on the biggest supercomputers in existence. These computer simulations were able to simulate relatively large numbers of particles, such as the 30,000 atoms used in DeMarco's experiments.

Together, Meldgin and Ray were able to show something startling—that a dynamic probe in the experiment connects to the equilibrium computer simulations.

"In both cases, the same amount of disorder is required to turn a superfluid into a Bose-glass," Ray stated. "This result is critically important to our understanding of disordered quantum materials, which are ubiquitous, since disorder is difficult to avoid. It also has important implications for quantum annealers, like the D-Wave Systems device."

Explore further: Solving hard quantum problems—everything is connected

More information: Carolyn Meldgin et al. Probing the Bose glass–superfluid transition using quantum quenches of disorder, Nature Physics (2016). DOI: 10.1038/nphys3695

Related Stories

Solving hard quantum problems—everything is connected

January 26, 2016

Quantum objects cannot just be understood as the sum of their parts. This is what makes quantum calculations so complicated. Scientists at TU Wien have now calculated Bose-Einstein-condensates, revealing the secrets of the ...

Physicists localize 3-D matter waves for first time (w/ video)

October 7, 2011

University of Illinois physicists have experimentally demonstrated for the first time how three-dimensional conduction is affected by the defects that plague materials. Understanding these effects is important for many electronics ...

A quantum leap for the next generation of superconductors

February 26, 2016

Quantum materials – materials designed at the sub-atomic level – can be finely-tuned to achieve extremely useful properties that are often not found in nature. These include superconductivity, the ability to conduct electricity ...

Recommended for you

Changing semiconductor properties at room temperature

October 28, 2016

It's a small change that makes a big difference. Researchers have developed a method that uses a one-degree change in temperature to alter the color of light that a semiconductor emits. The method, which uses a thin-film ...

Novel light sources made of 2-D materials

October 28, 2016

Physicists from the University of Würzburg have designed a light source that emits photon pairs, which are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal ...

Shocks in the early universe could be detectable today

October 27, 2016

(Phys.org)—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.