Evidence for a remarkable structural diversity of amyloid fibrils in human and animal tissue

March 15, 2016
Evidence for a remarkable structural diversity of amyloid fibrils in human and animal tissue

Formation of amyloid fibrils is a characteristic feature of neurogenerative diseases like Alzheimer's. As published in the journal Angewandte Chemie, German and American scientists have found evidence that these fibrils adopt several distinct three-dimensional architectures in real patient and animal tissues.

If a protein misfolds, it is usually readily degraded into its harmless components by special proteolytic enzymes in the cell. However, under certain pathologic conditions, some proteins or polypeptide chains can form aggregates that stack together in very stable fibrils, the most prominent forms being the amyloid fibrils found in the brain tissue of Alzheimer' s patients. These fibrils can have different morphologies varying lengths and widths and in the structure of the crossover region where the polypeptides entangle. However, that was found for laboratory-grown samples, but do these morphologies also occur in real tissue? A team of scientists at research institutes in Germany and the United States led by Marcus Fändrich at Ulm University have thoroughly investigated extracts from animals and patients suffering from different forms of amyloidosis and found that yes, they do. Their result has important applications for possible treatment scenarios.

In general, amyloid fibrils can be detected by dye binding, and special give insight into the folding pattern of the proteins. However, this may not be enough for distinguishing these morphologies. "Such intra-sample polymorphism can be invisible to spectroscopic techniques and requires single-particle techniques," the authors say. Therefore, Fändrich and his colleagues employ electron microscopy techniques to identify the morphologies.

They extracted and investigated amyloid fibril structures from real diseased tissues. The first examples were taken from the hearts of two individuals suffering from so-called light-chain amyloidosis. The fibrils displayed at least two morphologies, the scientists found. "Morphology I is thinner, while morphology II presents a more clearly resolved crossover structure," they write. The same was true for another sample from a patient who suffered from a transthyretin-amyloidosis, and also for animal samples like goat and mouse. All extracted fibril samples contained the fibrils in various and distinguishable shapes. Thus the scientists conclude: "The within a diseased individual can vary considerably in their three-dimensional architecture."

This result of pathogenic polymorphism within one individual is very important because it has impact on possible personalized medicine approaches for those forms of amyloidosis where the prove fatal: As patients develop more than one fibril structure, treatment of only a single fibril form would not be effective.

Explore further: Flash frozen under the electron microscope: Examining the mechanical properties of Alzheimer’s amyloid fibrils

More information: Karthikeyan Annamalai et al. Polymorphism of Amyloid Fibrils In Vivo, Angewandte Chemie International Edition (2016). DOI: 10.1002/anie.201511524

Related Stories

A DNA-made trap may explain amyloidosis aggravation

October 9, 2012

Amyloidosis is a group of clinical syndromes characterized by deposits of amyloid fibrils throughout the body. These fibrils are formed by aggregates of proteins that have not been properly folded. Deposits of amyloid fibrils ...

Recommended for you

New electrical energy storage material shows its power

August 24, 2016

A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.

Calcium channel blockers caught in the act at atomic level

August 24, 2016

An atomic level analysis has revealed how two classes of calcium channel blockers, widely prescribed for heart disease patients, produce separate therapeutic effects through their actions at different sites on the calcium ...

Bio-inspired tire design: Where the rubber meets the road

August 24, 2016

The fascination with the ability of geckos to scamper up smooth walls and hang upside down from improbable surfaces has entranced scientists at least as far back as Aristotle, who noted the reptile's remarkable feats in his ...

Selecting the right house plant could improve indoor air

August 24, 2016

Indoor air pollution is an important environmental threat to human health, leading to symptoms of "sick building syndrome." But researchers report that surrounding oneself with certain house plants could combat the potentially ...

LiH mediates low-temperature ammonia synthesis

August 24, 2016

Nearly half of the world's population is fed by industrial N2 fixation, i. e., the Harbor-Bosch process. Although exergonic in nature, NH3 synthesis from N2 and H2 catalyzed by the fused Fe has to be conducted at elevated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.