Shock compression research shows hexagonal diamond could serve as meteor impact marker

March 14, 2016
It has been hypothesized that lonsdaleite forms when graphite-bearing meteors strike the Earth. The violent impact generates incredible heat and pressure, transforming the graphite into diamond while retaining the graphite’s original hexagonal structure

In 1967, a hexagonal form of diamond, later named lonsdaleite, was identified for the first time inside fragments of the Canyon Diablo meteorite, the asteroid that created the Barringer Crater in Arizona.

Since then, occurrences of lonsdaleite and nanometer-sized have been speculated to serve as a marker for meteorite impacts, having also been connected to the Tunguska explosion in Russia, the Ries crater in Germany, the Younger Dryas event in sites across Northern America and more.

It has been hypothesized that lonsdaleite forms when graphite-bearing meteors strike the Earth. The violent impact generates incredible heat and pressure, transforming the graphite into diamond while retaining the graphite's original hexagonal structure. However, despite numerous theoretical and limited experimental studies, crucial questions have remained unresolved for short-time high-pressure environments relevant to meteor impacts, particularly the structural state immediately after the shock transit, the timescales involved and the influence of crystalline orientation.

In a new paper published today by Nature Communications, a team of researchers, including scientists from Lawrence Livermore National Laboratory (LLNL), provide new insight into the process of the shock-induced transition from graphite to diamond and uniquely resolve the dynamics of the phase change.

The experiments show unprecedented in situ X-ray diffraction measurements of dynamic diamond formation on nanosecond timescales by shock compression of graphite starting at pressures above 0.5 Mbar (1 Mbar = 1 million atmospheres). The team observed the direct formation of lonsdaleite above 1.7 Mbar, for the first time resolving the process that has been proposed to explain the main natural occurrence of this crystal structure being close to meteor impact sites.

"Due to difficulties in creating lonsdaleite under static conditions, the overall existence of this in nature has been questioned recently," said lead author Dominik Kraus. Kraus conducted this research while working as a University of California, Berkeley, Physics Department postdoc sited within LLNL's NIF & Photon Science directorate. He now serves as the Helmholtz Young Investigator group leader at Helmholtz-Zentrum Dresden-Rossendorf in Germany.

"However, static experiments cannot mimic fast dynamics such as those in violent meteor impact events," he said. "Here we show that we can indeed create a lonsdaleite structure during dynamic high-pressure events. This is interesting for modeling dynamic phase transitions in general, but also shows that the lonsdaleite found in nature could indeed serve as a marker for violent meteor impacts."

The experiments were conducted at the Matter at Extreme Conditions (MEC) experimental area at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory at Stanford. Graphite samples were shock-compressed to pressures of up to 2 million atmospheres (2 Mbar) to trigger the structural transitions from graphite to diamond and lonsdaleite. The phase changes in the high-pressure samples were probed with ultrafast (femtosecond) X-ray pulses created by LCLS.

According to Kraus, this was the very first in situ structure measurement of the shock-induced graphite to diamond transition. Before these experiments, all conclusions regarding this structural transition where based from the material that was recovered after applying the shock drive or dynamic measurements of macroscopic quantities, such as density and pressure.

"You won't get rich from our experiments, but the shock-induced transition from graphite to diamond already has important industry applications," he said. "For example, nanometer-sized diamonds for fine polishing of materials are created by detonation of carbon-bearing explosives. These explosions typically generate pressures up to ~0.5 Mbar, just above the threshold of diamond formation. Here we show that above 2 Mbar, the lonsdaleite structure can be generated in a very pure form. Since pure lonsdaleite is supposedly even harder than diamond, this is highly interesting and other groups now try to recover these samples after an experiment."

Explore further: Asteroid impacts on Earth make structurally bizarre diamonds

More information: D. Kraus et al. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite, Nature Communications (2016). DOI: 10.1038/ncomms10970

Related Stories

Asteroid impacts on Earth make structurally bizarre diamonds

November 21, 2014

(Phys.org) —Scientists have argued for half a century about the existence of a form of diamond called lonsdaleite, which is associated with impacts by meteorites and asteroids. A group of scientists based mostly at Arizona ...

Under pressure: Ramp-compression smashes record

November 11, 2011

In the first university-based planetary science experiment at the National Ignition Facility (NIF), researchers have gradually compressed a diamond sample to a record pressure of 50 megabars (50 million times Earth's atmospheric ...

Meteorite yields carbon crystals harder than diamond

February 3, 2010

(PhysOrg.com) -- Two new types of ultra-hard carbon crystals have been found by researchers investigating the ureilite class Haverö meteorite that crashed to Earth in Finland in 1971. Ureilite meteorites are carbon-rich ...

How diamonds emerge from graphite

September 21, 2011

Scientists have used a new method to precisely simulate the phase transition from graphite to diamond for the first time. Instead of happening concerted, all at once, the conversion evidently takes place in a step by step ...

Diamond in the rough: Half-century puzzle solved

July 20, 2012

(Phys.org) -- A Yale-led team of mineral physicists has for the first time confirmed through high-pressure experiments the structure of cold-compressed graphite, a form of carbon that is comparable in hardness to its cousin, ...

Recommended for you

Uncovering the secrets of water and ice as materials

December 7, 2016

Water is vital to life on Earth and its importance simply can't be overstated—it's also deeply rooted within our conscience that there's something extremely special about it. Yet, from a scientific point of view, much remains ...

Blocks of ice demonstrate levitated and directed motion

December 7, 2016

Resembling the Leidenfrost effect seen in rapidly boiling water droplets, a disk of ice becomes highly mobile due to a levitating layer of water between it and the smooth surface on which it rests and melts. The otherwise ...

The case for co-decaying dark matter

December 5, 2016

(Phys.org)—There isn't as much dark matter around today as there used to be. According to one of the most popular models of dark matter, the universe contained much more dark matter early on when the temperature was hotter. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.