Rising CO2 levels alter species interactions

Rising CO2 levels alter species interactions
Pseudolithophyllum muricatum overgrows other coralline algae and barnacles at Tatoosh Island, WA. Coralline algae compete for space via overgrowth interactions on shorelines worldwide.

Global climate change may actually be setting the stage for greater species diversity in the Pacific Northwest.

And that could be both positive and negative, depending on the species.

As the climate changes, scientists have been closely monitoring what happens as more enters our waterways. In recognition of that issue, Florida State University Assistant Professor of Biological Science Sophie McCoy delved into old experiments that explained species diversity and how different species were competitive with one another.

Noticing physical changes in the algae's , she wanted to see if ongoing —the increase in carbon dioxide in the water—affected species interaction.

The answer was yes.

"Ocean acidification is promoting competition and no one is dominating," McCoy said.

The research is published today in the journal Proceedings of the Royal Society B.

McCoy, a marine ecologist by training, specifically examined types of coralline algae, a hard skeletal algae that is crucial to marine systems and a food source for several sea creatures including sea urchins and mollusks. They proved an ideal species to study because there was plenty of historical data that allowed McCoy and her colleagues to look at changes over time.

McCoy spent three years on the Makah Reservation on Tatoosh Island in Washington studying the different types of . In the past, studies have shown that one type of algae is usually the dominant player and forces other types out. But now, as the carbon dioxide levels have grown, there is more competition among the species, and in turn, more diversity.

Researchers also found through historical data that these increased competitive interactions developed over time. There was not a sudden change.

For the bigger picture, McCoy said that means ecologists and conservationists can start looking for early signs that interactions may be about to change. If the change has negative ramifications, they can start investigating potential corrective measures.

"If you're looking for these early warning signs, you might see these changes in interactions and catch it before a big change happens," she said. "I think it's important to understand that there are changes in how ecological communities are being put together or how they function, to be aware that how we think of communities working or responding to stress is changing.  This could lead to reduced ability of a community to buffer change."

More information: Sophie J. McCoy et al. Ocean acidification affects competition for space: projections of community structure using cellular automata, Proceedings of the Royal Society B: Biological Sciences (2016). DOI: 10.1098/rspb.2015.2561

Citation: Rising CO2 levels alter species interactions (2016, March 3) retrieved 19 March 2024 from https://phys.org/news/2016-03-co2-species-interactions.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Key species of algae shows effects of climate change over time

368 shares

Feedback to editors