Carbon leads the way in clean energy

March 22, 2016
Credit: Wikimedia Commons - Public Domain

Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen.

Professor Xiangdong Yao and his team from Griffith's Queensland Micro- and Nanotechnology Centre have successfully managed to use the element to produce hydrogen from water as a replacement for the much more costly platinum.

"Hydrogen production through an electrochemical process is at the heart of key renewable technologies including water splitting and ," says Professor Yao.

"Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains a great challenge.

"Platinum is the most active and stable electrocatalyst for this purpose, however its low abundance and consequent high cost severely limits its large-scale commercial applications.

"We have now developed this carbon-based catalyst, which only contains a very small amount of nickel and can completely replace the platinum for efficient and cost-effective from water.

"In our research, we synthesize a nickel-carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution.

"This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance and impressive durability."

Proponents of a hydrogen economy advocate as a potential fuel for motive including cars and boats and on-board auxiliary power, stationary power generation (e.g., for the energy needs of buildings), and as an energy storage medium (e.g., for interconversion from excess electric power generated off-peak).

Professor Yao says that this work may enable new opportunities for designing and tuning properties of electrocatalysts at atomic scale for large-scale water electrolysis.

The study will be published in Nature Communications.

Explore further: Efficiency of water electrolysis doubled

Related Stories

Efficiency of water electrolysis doubled

March 10, 2016

Researchers have boosted the efficiency of water electrolysis. They applied a layer of copper atoms in a conventional platinum electrode. Thus, reaction intermediates could desorb a bit more easily from the catalyst surface. ...

Ferrite boosting photocatalytic hydrogen evolution

March 10, 2016

Photocatalytic hydrogen generation via water splitting has become a hot spot in the field of energy and materials. The goal of this technique is to construct cheap and efficient photocatalytic water splitting systems at an ...

Recommended for you

Close up of the new mineral merelaniite

October 28, 2016

A team led by a physicist from Michigan Technological University has discovered a new mineral, named for the region in Tanzania where it comes from.

Self-sealing syringe prevents blood loss in hemophilic mice

October 28, 2016

(—For people whose blood does not clot appropriately, such as those with hemophilia, diabetes, or cancer, getting an injection or blood draw with a hypodermic needle is not a trivial matter. Because the needle ...

A composite thread that varies in rigidity

October 27, 2016

EPFL scientists have developed a new type of composite thread that varies in stiffness depending on its temperature. Applications range from multifunctional robots to knitted casts, and even tunable medical devices.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.