Caught for the first time: The early flash of an exploding star

March 21, 2016
The diagram illustrates the brightness of a supernova event relative to the sun as the supernova unfolds over time. For the first time, a supernova shock wave, or shock breakout, has been observed in visible light wavelengths as it reached the surface of the star from deep within the star's core. The explosive death of this star, called KSN 2011d, reached its maximum brightness in about 14 days. The shock breakout itself lasted only about 20 minutes (see inset). Credit: NASA Ames/W. Stenzel

NASA's planet hunter, the Kepler space telescope, has captured the brilliant flash of an exploding star's shock wave—what astronomers call the "shock breakout" of a supernova—for the first time in visible light wavelengths.

An international science team, including two astronomers from the University of Maryland, analyzed light captured by Kepler every 30 minutes over a three-year period, searching some 50 trillion stars spread across 500 distant galaxies. The astronomers were hunting for signs of massive stellar death explosions known as supernovae. The researchers describe their results in a paper accepted for publication in the Astrophysical Journal.

In 2011, two massive stars, called red supergiants, exploded while in Kepler's view. The first behemoth, KSN 2011a, is nearly 300 times the size of our sun and 700 million light years from Earth. The second, KSN 2011d, is roughly 500 times the size of our sun and about 1.2 billion light years away.

"To put their size into perspective, Earth's orbit about our sun would fit comfortably within these colossal stars," said Peter Garnavich, an astrophysics professor at the University of Notre Dame in Indiana who led the analysis efforts.

Whether it's a plane crash, car wreck or supernova, capturing images of sudden, catastrophic events is extremely difficult but tremendously helpful for understanding the event's root cause. The steady gaze of Kepler allowed astronomers to see, at last, a supernova shock wave as it reached the surface of a star. Catching this flash of energy is an investigative milestone for astronomers, because the shock breakout only lasts about 20 minutes.

"Like police getting surveillance footage of a crime after the event, we can study brightness histories from Kepler to find out what was happening in the exact hour that the shock wave from the stellar core reached the surface of the star," said Edward Shaya, an associate research scientist in astronomy at UMD and a co-author on the study. "These events are bright enough that they change the brightness of the whole galaxy by a measurable amount."

Supernovae like these—known as Type II—begin when the internal furnace of a star runs out of nuclear fuel, causing its core to collapse as gravity takes over. The two supernovae matched up well with mathematical models of Type II explosions, thus reinforcing some existing theories.

But the supernovae also revealed an unexpected variety in these cataclysmic stellar events. While both explosions delivered a similar energetic punch, no shock breakout was seen in the smaller of the two supergiants. Scientists think this is likely due to the smaller star being surrounded by gas—perhaps enough to mask the shock wave when it reached the star's surface.

"That is the puzzle of these results," said Garnavich. "You look at two supernovae and see two different things. That's maximum diversity."

Studying the physics of these violent events allows scientists to better understand how the seeds of chemical complexity and life itself have been scattered in space and time in our Milky Way galaxy.

"All heavy elements in the universe come from supernova explosions. For example, all the silver, nickel, and copper in the earth and even in our bodies came from the explosive death throes of stars," said Steve Howell, project scientist for NASA's Kepler and K2 missions at NASA's Ames Research Center in California's Silicon Valley. "Life exists because of supernovae."

Garnavich, Shaya and their co-authors are part of a research team known as the Kepler Extragalactic Survey (KEGS). The team is nearly finished mining data from Kepler's primary mission, which ended in 2013. However, with the reboot of the Kepler spacecraft as NASA's K2 mission, the team is now hunting for supernova events in other distant galaxies.

"It is a thrill to be a part of theoretical predictions becoming an observed and tested phenomenon," Shaya said. "We now have more than just theory to explain what happens when a supernova shock wave reaches the surface of a star as that star is totally torn apart."

The research paper, "Shock Breakout and Early Light Curves of Type II-P Supernovae Observed with Kepler," has been accepted for publication in the Astrophysical Journal.

Explore further: Kepler's six years in science (and counting)

More information: The research paper reporting this discovery has been accepted for publication in the Astrophysical Journal and can be found on Arxiv: http://arxiv.org/abs/1603.05657

Related Stories

Kepler's six years in science (and counting)

May 13, 2015

NASA's Kepler spacecraft began hunting for planets outside our solar system on May 12, 2009. From the trove of data collected, we have learned that planets are common, that most sun-like stars have at least one planet and ...

Hubble image: Dazzling diamonds

January 21, 2016

Single stars are often overlooked in favour of their larger cosmic cousins—but when they join forces, they create truly breathtaking scenes to rival even the most glowing of nebulae or swirling of galaxies. This NASA/ESA ...

What are the different kinds of supernovae?

March 15, 2016

There are a few places in the universe that defy comprehension. And supernovae have got to be the most extreme places you can imagine. We're talking about a star with potentially dozens of times the size and mass of our own ...

Recommended for you

Pluto's 'heart' sheds light on a possible buried ocean

September 23, 2016

Ever since NASA's New Horizons spacecraft flew by Pluto last year, evidence has been mounting that the dwarf planet may have a liquid ocean beneath its icy shell. Now, by modeling the impact dynamics that created a massive ...

Nasa scientists find 'impossible' cloud on Titan—again

September 21, 2016

The puzzling appearance of an ice cloud seemingly out of thin air has prompted NASA scientists to suggest that a different process than previously thought—possibly similar to one seen over Earth's poles—could be forming ...

Summer fireworks on Rosetta's comet

September 23, 2016

Brief but powerful outbursts seen from Comet 67P/Churyumov–Gerasimenko during its most active period last year have been traced back to their origins on the surface.

Chemically peculiar star HR8844 could be a hybrid object

September 21, 2016

(Phys.org)—Astronomers from the Paris Observatory in Meudon, France and the Notre Dame University – Louaize in Zouk Mosbeh, Lebanon, report that an A-type main-sequence star HR8844, could be a hybrid object between two ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.