Antibiotics use affects the abundance of resistant bacteria in soil

March 7, 2016 by Janne Hansen
There is a relation between the use of antibiotics and the appearance of genes for antibiotic resistance in the environment. Credit: Janne Hansen

The use of animal manure increases the soil content of antibiotic-resistant genes. However, this is not an irreversible situation.

What does one of the world's longest-running field experiments - under Aarhus University in Denmark - have to do with the appearance of antibiotic resistance? The answer is that it forms the platform for illuminating the interaction between the use of and the appearance of genes for antibiotic resistance in .

New investigations show that when a certain type of antibiotic is phased in, the abundance of resistant genes in soil increases. When the antibiotic is phased out again, the abundance of resistant genes drops - and this happens relatively quickly. The scientists also found a correspondence in time between the first detection of antibiotic resistance in the health service and the detection of such genes for resistance in soil that had received applications of animal manure.

The analyses have been performed by British scientists using soil samples regularly collected since 1923 in the now 122-year-old fertiliser experiment at Askov Experimental Station at the Department of Agroecology, Aarhus University. The results of this partnership among Prof Bent Tolstrup Christensen (Aarhus University), Prof David W. Graham (project leader, Newcastle University in England) and Dr Charles Knapp (Strathclyde University in Scotland) have been described in an article in the prestigious scientific journal Nature Scientific Reports.

Resistance follows the rate of consumption

That bacteria can develop resistance to bacteria is not a new phenomenon. Genes that code for resistance to antibiotics existed even before we discovered and started using antibiotics. Multi-resistant genes have actually been found in 30,000-year-old DNA samples taken in permafrost areas. The problem is that a higher incidence of resistance to antibiotics is highly undesirable.

The experts studied the specific β-lactam antibiotic resistant genes. Particularly this group of antibiotics is of considerable importance to human medicine. The resistant genes were chosen because their first appearance in the health system is well-documented.

"We found low levels of the resistant genes before 1960, both in manured soil and in soil treated with inorganic fertiliser," explains Prof Christensen from Department of Agroecology. He is project leader of the Askov Long-term Experiments and co-author of the article.

"Our analyses show a clear increase in the soil receiving animal manure. In the mid-1990s, the use of antibiotics as a growth promoter fell. This led to a corresponding rapid fall in the soil abundance of β-lactam antibiotic resistant genes," says Christensen.

Throughout the period, the soil receiving inorganic fertiliser had very low levels of the resistant genes.

There is good news and there is bad news

Another important link is that the development of the abundance in soil of β-lactam antibiotic resistant genes closely trail observations of their development in the health service. The timing of the first appearances of the resistant genes in the health service corresponds to the timing of their highest abundance in soil.

"Although the development in the abundance of resistant genes in soil mirrors what you see in the health service, research has not yet made a connection between the two. The results show, however, that the phasing out of antibiotics can swiftly lead to a reduction in the incidence of resistance - and that is good news," says Christensen.

The story does not end here. Analyses of the historical samples also showed another development that is more worrying. Since 1990 there has been a growing level of integrons in manured soil. Integrons promote the exchange of genetic material between bacteria and can therefore accelerate the development of new resistance.

"The rising level of integrons after 1990 in manured soil could indicate that through our efforts to reduce , we have unintentionally increased resistance gene exchange and more study is needed on the use of animal manure," says Prof Graham from Newcastle University.

Explore further: Losing the fight against antibiotic resistance

More information: David W. Graham et al. Appearance of β-lactam Resistance Genes in Agricultural Soils and Clinical Isolates over the 20th Century, Scientific Reports (2016). DOI: 10.1038/srep21550

Related Stories

Losing the fight against antibiotic resistance

February 16, 2016

Tackling antibiotic resistance on only one front is a waste of time because resistant genes are freely crossing environmental, agricultural and clinical boundaries, new research has shown.

Antibiotic resistance spreading to wildlife

July 28, 2015

Researchers have found antibiotic resistance genes are spreading to bacteria of Australian wildlife, including captive sea lions and rock wallabies, and the little penguins of Sydney Harbour.

Antibiotic resistance genes are essentially everywhere

May 8, 2014

The largest metagenomic search for antibiotic resistance genes in the DNA sequences of microbial communities from around the globe has found that bacteria carrying those vexing genes turn up everywhere in nature that scientists ...

Recommended for you

Mice can smell oxygen

December 2, 2016

The genome of mice harbours more than 1000 odorant receptor genes, which enable them to smell myriad odours in their surroundings. Researchers at the Max Planck Research Unit for Neurogenetics in Frankfurt, the University ...

How single-celled organisms navigate to oxygen

December 2, 2016

A team of researchers has discovered that tiny clusters of single-celled organisms that inhabit the world's oceans and lakes, are capable of navigating their way to oxygen. Writing in e-Life scientists at the University ...

Natural nomads, leatherback turtles opt to stay in place

December 2, 2016

Endangered leatherback sea turtles are known for their open-ocean migratory nature and nomadic foraging habits – traveling thousands of miles. But a Cornell naturalist and his colleagues have discovered an area along the ...

Neural stem cells serve as RNA highways too

December 1, 2016

Duke University scientists have caught the first glimpse of molecules shuttling along a sort of highway running the length of neural stem cells, which are crucial to the development of new neurons.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.