Subsurface carbon dioxide storage: Risks for biogeochemical cycles in the soil

February 23, 2016
One of the analyzed mofettes that were long considered as being hostile to life. Credit: Felix Beulig

The more clearly the dimensions of global warming become visible, the greater is the pressure to find possible ways to avoid a further increase in the concentration of carbon dioxide (CO2) in the atmosphere. At the same time the stripping and subterranean storage of this greenhouse gas is being discussed. But what would the impact and the risks of such storage be?

The result of what would happen if such storage leaked can be demonstrated by practical experiments. Therefore in the last few years a small valley in the Czech spa triangle became a kind of open air laboratory. Here is why: In this location, CO2 streams in so-called mofettes in large amounts naturally from the depths. The impact of high CO2 concentrations can be studied based on the after-effects of volcanicity, without human beings having to interfere with nature. Health spas like Karlovy Vary (Karlsbad), Mariánské Lázne (Marienbad) or Františkovy Lázně (Franzensbad), and also the spa towns of Bad Elster and Bad Brambach in Saxony owe their existence to the volcanic activity of earlier times.

A team of scientists under the leadership of Prof. Kirsten Küsel from the chair for Aquatic Geomicrobiology of the Friedrich Schiller University Jena (Germany) had a close look at the area around a mofette, in which the air consisted of nearly pure CO2. From 2012 to 2014 the researchers collected samples three times per year. They then compared them with samples from a comparative soil without increased CO2 concentration that was only a few meters away. "In the soil of the mofette we found significantly more – remains of dead plants and animals, which are normally decomposed by small soil animals and single-cell organisms, bacteria and fungi," reports Dr. Felix Beulig of the Friedrich Schiller University Jena, who meanwhile works at the University Aarhus in Denmark. By means of modern chemical and molecular biological methods the researchers were able to discover the mechanism which triggered this change: The CO2 had changed the living conditions in the soil so much, that the soil animals were excluded and the community of microorganisms had moved towards less manifold but more highly specialised species. Thus the in the soil became less efficient in the degradation of organic material which then had accumulated in the ground. Moreover, isotopic measurements were able to show that in the organic soil material large amounts of carbon originated from the earth's mantle. Plants and microorganisms had earlier absorbed this from the leaking CO2.

So-called 'omics'-methods allowed the researchers to take into account the whole genetic information of all soil creatures (DNA and RNA) in their analysis. Moreover the team could assess which genetic information was actively used at the time. Thus conclusions could be drawn considering those biogeochemical cycles in the soil which influence the storage and the degradation of organic carbon. "From our results we can draw the conclusion that extremely high concentrations of will change the food web and the metabolism in the soil in the long term," Prof. Kirsten Küsel of the University of Jena and the iDiv explains. The comprehensive analysis with a combination of 'omics'- and biogeochemical methods was also pointed out by Prof. Joshua Schimel from the University of California (USA) in a commentary, which was published in the same edition of Nature Microbiology.

The analyzed mofette is an extreme habitat that was long considered as being hostile to life. As early as last year, though, the research team was able to show that strongly adapted organisms quite like it there. The new study offered insights into the complex correlations between communities of organisms and the carbon dynamic in the soil. The results of the study will help to evaluate the environmental risks of the subterranean CO2 storage.

Explore further: Life in the poisonous breath of sleeping volcanos

More information: Felix Beulig et al. Altered carbon turnover processes and microbiomes in soils under long-term extremely high CO2 exposure, Nature Microbiology (2016). DOI: 10.1038/nmicrobiol.2015.25

Joshua Schimel. Microbial ecology: Linking omics to biogeochemistry, Nature Microbiology (2016). DOI: 10.1038/nmicrobiol.2015.28

Related Stories

Life in the poisonous breath of sleeping volcanos

April 1, 2015

Researchers of the University Jena analyze the microbial community in volcanically active soils. In a mofette close to the Czech river Plesná in north-western Bohemia, the team around Prof. Dr. Kirsten Küsel found numerous ...

A carbon sink that can't be filled

January 7, 2016

Forests can store as much as 45 percent of the world's terrestrial carbon, making them a critical part of the process of regulating climate change.

Soil frost affects greenhouse gas emissions in the Arctic

January 14, 2016

Soil frost is a nearly universal process in the Arctic. In a recent dissertation by doctoral student Marina Becher at Umeå University, it is shown that the frequency and extent of soil frost is important for the release ...

How does soil store CO2?

January 8, 2014

Global CO2 emissions continue to rise—in 2012 alone, 35.7 billion tons of this greenhouse gas entered the atmosphere. Some of it is absorbed by the oceans, plants and soil. They provide a significant reservoir of carbon. ...

Recommended for you

New finding supports Moon creation hypothesis

September 26, 2016

A layer of iron and other elements deep underground is the evidence scientists have long been seeking to support the hypothesis that the moon was formed by a planetary object hitting the infant Earth some 4.5 billion years ...

Melting Greenland ice threatens to expose Cold War waste

September 26, 2016

A snow-covered former US army base in Greenland—dubbed "a city under ice"—could leak pollutants into the environment as the climate changes, raising difficult questions over who is responsible for a clean-up.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.