Researchers find new cause of strong earthquakes

February 8, 2016
Penn State researcher Christelle Wauthier led a study to investigate ties between two natural disasters occurring eight months apart in the Democratic Republic of Congo in 2002: an eruption of the Nyiragongo volcano (pictured), and a magnitude 6.2 earthquake. Credit: Christelle Wauthier, Penn State

A geologic event known as diking can cause strong earthquakes—with a magnitude between 6 and 7, according to an international research team.

Diking can occur all over the world but most often occurs in areas where the Earth's tectonic plates are moving apart, such as Iceland, Hawaii and parts of Africa in the East African Rift System. As plates spread apart, magma from beneath the Earth's surface rises into the space, forming vertical magma intrusions, known as dikes. The dike pushes on the surrounding rocks, creating strain.

"Diking is a known phenomenon, but it has not been observed by geophysical techniques often," said Christelle Wauthier, assistant professor of geosciences, Penn State who led the study. "We know it's linked with rift opening and it has implications on plate tectonics. Here, we see that it also could pose hazards to nearby communities."

The team investigated ties between two natural disasters from 2002 in the Democratic Republic of the Congo, East African Rift System. On Jan. 17, the Nyiragongo volcano erupted, killing more than 100 people and leaving more than 100,000 people homeless. Eight months later a magnitude 6.2 struck the town of Kalehe, which is 12 miles from the Nyiragongo volcano. Several people died during the Oct. 24 earthquake, and Kalehe was inundated with water from nearby Lake Kivu.

"The Kalehe earthquake was the largest recorded in the Lake Kivu area, and we wanted to find out whether it was coincidence that, eight months before the earthquake, Nyiragongo erupted," said Wauthier.

The researchers used a remote sensing technique, Interferometric Synthetic Aperture Radar, to measure changes to the Earth's surface before and after both .

"This technique produces ground surface deformation maps. Then, you can invert those deformation maps to find a source that could explain the observed deformation. For the deformation observed in January 2002, we found that the most likely explanation, or best-fitting model, was a 12-mile diking intrusion in between Nyiragongo and Kalehe," said Wauthier.

The researchers used the same technique for the October 2002 magnitude 6.2 earthquake, analyzing seismicity in addition to ground-deformation changes. They found that there was a fault on the border of the East African Rift System that slipped, triggering the earthquake.

"We were able to identify the type of fault that slipped, and we also had the best-fitting model for the dike intrusion," said Wauthier. "Knowing both of those, we performed a Coulomb stress-change analysis and found that the January 2002 dike could have induced the October 2002 earthquake."

Coulomb stress-change analysis is a modeling technique that calculates the stress changes induced by a deformation source at potential receiver faults throughout a region. If the Coulomb stress changes are positive, it means that the source is bringing the receiver fault closer to failure—closer to slipping and generating an earthquake. This type of analysis is regularly applied to assess whether an earthquake in one region could trigger a secondary earthquake nearby.

The researchers hypothesized that the dike opening pushed outward against the adjacent rocks. These rocks became strained and passed stress to rocks adjacent to them, accumulating stress on rocks on a fault in the Kalehe area. The dike brought this fault closer to failure and, eight months later, a small stress perturbation could have triggered the start of the magnitude 6.2 earthquake.

"We've known that every time magma flows through the Earth's crust, you create stress and generate seismicity," said Wauthier. "But these are normally very low magnitude earthquakes. This study suggests that a diking event has the potential to lead to a large earthquake," said Wauthier.

The researchers report their findings in the current issue of Geochemistry, Geophysics, Geosystems.

Explore further: Relationship between two recent New Zealand earthquakes

Related Stories

Relationship between two recent New Zealand earthquakes

September 26, 2011

The relationship between two earthquakes that took place near Christchurch, New Zealand, in September 2010 and February 2011 is examined in a paper published in Scientific Reports. The findings suggest that the first earthquake ...

What's beneath Hawaii's most active volcano?

March 3, 2015

Step away from the villages and idyllic beaches of Hawaii, and you may think you've been transported to the moon. Walking along the lava flows of the Kilauea volcano, the landscape changes from a lush tropical paradise to ...

Megathrust quake faults weaker and less stressed than thought

September 10, 2015

Some of the inner workings of Earth's subduction zones and their "megathrust" faults are revealed in a paper published today in the journal Science. U.S. Geological Survey scientist Jeanne Hardebeck calculated the frictional ...

NASA study improves understanding of LA quake risks

October 21, 2015

A new NASA-led analysis of a moderate magnitude 5.1 earthquake that shook Greater Los Angeles in 2014 finds that the earthquake deformed Earth's crust across a broad region encompassing the northern Los Angeles Basin and ...

Recommended for you

Did meteorites bring life's phosphorus to Earth?

August 30, 2016

Meteorites that crashed onto Earth billions of years ago may have provided the phosphorous essential to the biological systems of terrestrial life. The meteorites are believed to have contained a phosphorus-bearing mineral ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

RealScience
not rated yet Feb 08, 2016
Diking can occur all over the world but most often occurs in areas where the Earth's tectonic plates are moving apart, such as Iceland, Hawaii and parts of Africa in the East African Rift System.


Iceland and East Africa, yes, but Hawaii is NOT in an active rift zone.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.