Social sunbathing in the mint-sauce worm

February 23, 2016
Self-organizing social behavior in the so-called plant-animal, a 'solar-powered' species of marine flat worm that gains all its energy from the algae within its own body, has been demonstrated by researchers from the University of Bristol, UK. Commonly known as the 'mint-sauce worm' due to its bright-green color, S. roscoffensis is found in shallow water on sheltered sand beaches at certain sites on the Atlantic Coast. Credit: © Professor Nigel Franks

Self-organizing social behaviour in the so-called plant-animal, a 'solar-powered' species of marine flat worm that gains all its energy from the algae within its own body, has been demonstrated by researchers from the University of Bristol, UK.

Professor Nigel Franks in the School of Biological Sciences and colleagues, especially Dr Alan Worley, formerly of the School of Physics, made direct comparisons between videos of the real and computer simulations of virtual worms with different patterns of behaviour. This showed that individual plant-animal worms (Symsagittifera roscoffensis) interact with one another to coordinate their movements.

Commonly known as the 'mint-sauce worm' due to its bright-green colour, S. roscoffensis is found in shallow water on sheltered sand beaches at certain sites on the Atlantic Coast, including the coasts of Wales and the Channel Islands. Adult worms survive entirely on the nutrients produced by photosynthesizing symbiotic algae living in their bodies, hence their renown as the 'plant-animal'.

These 3mm-long worms sunbathe on beaches when the tide is out and bury themselves in the sand as the sea returns. The Bristol study shows how with increasing density they form small flotillas, and then circular mills. The authors hypothesize that these interactions eventually lead to the mat-like biofilms observed on sandy beaches. These social structures may help the worms to achieve safety in numbers and the right conditions for their unusual way of life.

Professor Franks said: "Such social behaviour helps the worms to form the dense biofilms that have been observed on certain sun-exposed sandy of the East Atlantic, and to become in effect a super-organismic seaweed in a habitat where macro-algal seaweeds cannot anchor themselves."

Symsagittifera roscoffensis is a 'model organism' in many areas in biology (including ) but its has been comparatively neglected.

"Our study suggests this remarkable organism also seems to be an ideal model for understanding how individual behaviours can lead, through collective movement, to social assemblages," Professor Franks added.

The research is published today in Proceedings of the Royal Society B.

Explore further: Mystery of 'zombie worm' development unveiled

More information: Social Behaviour and Collective Motion in Plant-Animal Worms, Proceedings of the Royal Society B: Biological Sciences, rspb.royalsocietypublishing.org/lookup/doi/10.1098/rspb.2015.2946

Related Stories

Mystery of 'zombie worm' development unveiled

March 12, 2013

How do bone-eating worms reproduce? A new study by Norio Miyamoto and colleagues from the Japan Agency for Marine-Earth Science and Technology sheds light on this question through a detailed observation of the postembryonic ...

Exploring the genomic basis of parasitism

February 2, 2016

The genes that cause parasitism in a group of intestinal worms, responsible for one of most prevalent tropical diseases in the developing world, have been identified by an international team of scientists, led by the University ...

Watching sensory information translate into behavior

February 12, 2016

It remains one of the most fundamental questions in neuroscience: How does the flood of sensory information—everything an animal touches, tastes, smells, sees, and hears—translate into behavior?

Worms use immune system to extract food from cells

February 16, 2016

White blood cells are usually our allies in fighting infections, but new research shows that when Trichinella worms first invade muscle cells, one particular type of white blood cell doesn't attack – rather it helps the ...

Recommended for you

Herbicides can't stop invasive plants. Can bugs?

August 31, 2016

Over the past 35 years, state and federal agencies have spent millions of dollars and dumped untold quantities of herbicides into waterways trying to control the invasive water chestnut plant, but the intruder just keeps ...

Smarter brains are blood-thirsty brains

August 30, 2016

A University of Adelaide-led project has overturned the theory that the evolution of human intelligence was simply related to the size of the brain—but rather linked more closely to the supply of blood to the brain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.