Researchers discover a royal flush in powering fuel cells with wastewater

February 23, 2016
Credit: Virginia Tech

As renewable energy sources goes, solar rays have historically hogged the limelight.

But two Virginia Tech researchers have stolen the spotlight from the sun by discovering a way to maximize the amount of electricity that can be generated from the wastewater we flush down the toilet.

An article recently published in Scientific Reports detailing their findings speaks to a growing sustainability movement to capture from existing waste to potentially make treatment facilities more energy-efficient.

Xueyang Feng and Jason He traced , which led them to discover that the working relationship between two specific substrates produced more energy than either did separately. This work will help take the mystery out of how electrochemically-active bacteria create energy. It could help in the development of new treatment system called a microbial .

"Tracing the bacteria gave us a major piece of the puzzle to start generating electricity in a sustainable way," said Feng, an assistant professor of biological systems engineering. "This is a step toward the growing trend to make centers self-sustaining in the energy they use."

The video will load shortly

Feng is in the College of Agriculture and Life Sciences and the College of Engineering; He, an associate professor of environmental engineering, is in the College of Engineering.

The discovery is important because not all organics perform the same job in the same way. Some work because they are food for the electricity-generating bacteria while others are good at conducting energy.

While one substrate known as lactate was mainly metabolized by its host bacteria to support cell growth, another substrate known as formate was oxidized to release electrons for higher electricity generation.

The team found that when these two substrates are combined, the output of energy is far greater than when they are working separately. The organics work in tandem with receptors in fuel cells, and while research using microbial fuel cells is not new, the kind of organics that Feng and He used was novel in generating electricity because they were able to measure the symbiotic nature of two particular organics.

The unique methodology that allowed them to trace the metabolic pathways of the different strains of bacteria, called carbon 13 pathway analysis, was the first time this type of isotope labeling process was used in measuring metabolism in microbes, the researchers said. The analysis works by creating a non-radioactive isotope on a carbon group that is visible through a mass spectrometry.

Harnessing energy from wastewater is a sustainability measure that even urban plants such as the wastewater treatment facilities in Washington, D.C. have already adopted. Harnessing energy using bacteria in microbial fuel cells is not the only way researchers are looking at generating energy from waste.

Treatment plants are now able to harness methane from the solids in sewage allowing towns such as Grand Junction, Colorado, to generate energy. The plant takes in 8 million gallons of wastewater and is the first city in the U.S. to fuel its vehicle fleet with produced from human waste.

He's research also includes work with gaseous elements, specifically ammonia. In wastewater, ammonia is a pollutant. If too much is discharged into a watershed, it feeds harmful algal blooms that can devastate aquatic ecosystems.

Mohan Qin, a second-year doctoral student in He's lab, has built a system that recovers ammonia and removes other contaminants while generating electricity at the same time. This is the first time that ammonia-driven forward osmosis has been combined with an ammonia-generating microbial electrochemical cell, Qin said.

The idea earned Qin, who is from Shandong Province, China, the 2015 Innovation Award for Best Technological Advancement from the International Society for Microbial Electrochemistry and Technology.

The results of this work encouraged the further development of microbial fuel cells, especially system scaling up. The He lab is currently operating a 200-L system in a local wastewater treatment plant for evaluating its long term performance with actual wastes.

For now, however, Feng and He are not only giving wastewater it's moment in the sun, they are making sure that, whether it's ammonia or organic waste, that producing energy from wastewater is part of a movement.

Explore further: Bacterial battery fuels recovery of valuable commodities from wastewater

More information: Shuai Luo et al. 13C Pathway Analysis for the Role of Formate in Electricity Generation by Shewanella Oneidensis MR-1 Using Lactate in Microbial Fuel Cells, Scientific Reports (2016). DOI: 10.1038/srep20941

Related Stories

Bacteria -- energy producers of the future? (w/ video)

August 22, 2011

All of us use water and in the process, a lot of it goes to waste. Whether it goes down drains, sewers or toilets, much of it ends up at a wastewater treatment plant where it undergoes rigorous cleaning before it flows back ...

Renewable energy obtained from wastewater

February 24, 2015

Researchers from the Universitat Autònoma de Barcelona have devised an efficient way to obtain electrical energy and hydrogen by using a wastewater treatment process. The proposed system, published in Water Research, uses ...

Running fuel cells on bacteria

January 30, 2015

Researchers in Norway have succeeded in getting bacteria to power a fuel cell. The "fuel" used is wastewater, and the products of the process are purified water droplets and electricity.

Recommended for you

Samsung to disable Note 7 phones in recall effort

December 9, 2016

Samsung announced Friday it would disable its Galaxy Note 7 smartphones in the US market to force remaining owners to stop using the devices, which were recalled for safety reasons.

Swiss unveil stratospheric solar plane

December 7, 2016

Just months after two Swiss pilots completed a historic round-the-world trip in a Sun-powered plane, another Swiss adventurer on Wednesday unveiled a solar plane aimed at reaching the stratosphere.

Solar panels repay their energy 'debt': study

December 6, 2016

The climate-friendly electricity generated by solar panels in the past 40 years has all but cancelled out the polluting energy used to produce them, a study said Tuesday.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

EnviroEquipment_Com
5 / 5 (2) Feb 23, 2016
Deriving energy, albeit relatively small amounts from wastewater is not the only value it has as a new facility in El Paso, Texas is going to recycle waste water from a desalinization plant for precious minerals thereby lowering the cost of water derived from the desalinization process, which is usually double the price of most freshwater generation.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.