New invention revolutionizes heat transport

February 1, 2016
Artistic impression of quantum-limited heat conduction of photons over macroscopic distances. Credit: Heikka Valja

Scientists at Aalto University, Finland, have made a breakthrough in physics. They succeeded in transporting heat maximally effectively ten thousand times further than ever before. The discovery may lead to a giant leap in the development of quantum computers.

Heat conduction is a fundamental physical phenomenon utilized, for example, in clothing, housing, car industry, and electronics. Thus our day-to-day life is inevitably affected by major shocks in this field. The research group, led by quantum physicist Mikko Möttönen has now made one of these groundbreaking discoveries. This new invention revolutionizes quantum-limited conduction which means as efficient heat transport as possible from point A to point B. This is great news especially for the developers of quantum computers.

Quantum technology is still a developing research field, but its most promising application is the super-efficient quantum computer. In the future, it can solve problems that a normal computer can never crack. The efficient operation of a quantum computer requires that it can be cooled down efficiently. At the same time, a quantum computer is prone to errors due to external noise.

Möttönen's innovation may be utilized in cooling quantum processors very efficiently and so cleverly that the operation of the computer is not disturbed.

The video will load shortly

"Our research started already in 2011 and advanced little by little. It feels really great to achieve a fundamental scientific discovery that has real practical applications", Professor Mikko Möttönen rejoices.

In the QCD Labs in Finland, Möttönen's research group succeeded in measuring quantum-limited heat transport over distances up to a meter. A meter doesn't sound very long at first, but previously scientists have been able to measure such only up to distances comparable to the thickness of a human hair.

"For computer processors, a meter is an extremely long distance. Nobody wants to build a larger processor than that", stresses Möttönen.

The discovery is so important, that it will be published on February 1st, 2016 in Nature Physics which is the most prestigious scientific journal in physics.

The key idea in their research was to use photons to transfer the heat. Photons are particles that, for example, form the visible light. Previously scientists have used, for example, electrons as the heat carriers.

"We know that photons can transport heat over . In fact, they bring the heat of the Sun to the Earth", Möttönen says.

The team came up with the idea to use a transmission line with no electrical resistance to transport the photons. This superconducting line was built on a silicon chip with the size of a square centimeter. Tiny resistors were placed at the ends of the transmission line. The research results were obtained by measuring induced changes in the temperatures of these resistors.

New physics

The Quantum Computing and Devices (QCD) group led by Prof. Möttönen was able to show that quantum-limited heat conduction is possible over long distances. The result enables the application of this phenomenon outside laboratories. Thus the device built by the team fundamentally changes how can be utilized in practice.

Möttönen's previous research results have also been praised in the scientific community as well as the media. He has published articles in top journals, such as Nature and Science. However, there is a reason why this new discovery feels even better than previous breakthroughs:

"The research has been fully carried out in my lab by my staff. This really makes me feel like I hit the jackpot", Möttönen rejoices.

Explore further: Scientists confirm existence of quantum knots and create them in a quantum-mechanical field

More information: Matti Partanen et al. Quantum-limited heat conduction over macroscopic distances, Nature Physics (2016). DOI: 10.1038/nphys3642 ,

Related Stories

Physicists discover quantum-mechanical monopoles

April 30, 2015

Researchers at Aalto University (Finland) and Amherst College have observed a point-like monopole in a quantum field itself for the first time. This discovery connects to important characteristics of the elusive monopole ...

Mechanical quanta see the light

January 19, 2016

Interconnecting different quantum systems is important for future quantum computing architectures, but has proven difficult to achieve. Researchers from the TU Delft and the University of Vienna have now realized a first ...

A step towards quantum electronics

December 17, 2015

Work of physicists at the University of Geneva (UNIGE), Switzerland, and the Swiss Federal Institute of Technology in Zurich (ETH Zurich), in which they connected two materials with unusual quantum-mechanical properties through ...

Researchers develop ideal single-photon source

September 7, 2015

With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream ...

The road to quantum computing

May 15, 2014

Anticipating the advent of the quantum computer, related mathematical methods already provide insight into conventional computer science.

Recommended for you

Shocks in the early universe could be detectable today

October 27, 2016

(—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...

Bubble nucleus discovered

October 27, 2016

Research conducted at the National Superconducting Cyclotron Laboratory at Michigan State University has shed new light on the structure of the nucleus, that tiny congregation of protons and neutrons found at the core of ...

Neutrons prove the existence of 'spiral spin-liquid'

October 27, 2016

Magnetic moments ("spins") in magnetic solids are capable of forming the most diverse structures. Some of them are not only of interest from a scientific point of view, but also from a technical standpoint: processors and ...


Adjust slider to filter visible comments by rank

Display comments: newest first

3.7 / 5 (3) Feb 01, 2016
4.8 / 5 (4) Feb 02, 2016
I don't care so much about chips. I'd like to see this made into insulation for buildings, so that the use of energy for heating and cooling could be slashed. Incorporate it into batteries and fuel cells and electric motors to improve the efficiency and range of electric vehicles.

Promoters of fossil fuels keep saying you can't run the economy with renewable energy. That's only true if you don't work the on reducing the consumption side of the equation. Manage heat better, reduce friction, and reduce the wattage needed. Then it's not hard to imagine twice as many people living better with half as much energy input.

No, I don't have equations. If you say I can't prove right now that it will work, you have missed the point.
Feb 02, 2016
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.