Three 'twisted' photons in 3 dimensions

February 29, 2016
Artist's depiction of the twisted-photon entangled state created in the Vienna experiment. Credit: Faculty of Physics, University of Vienna

Researchers at the Institute of Quantum Optics and Quantum Information, the University of Vienna, and the Universitat Autonoma de Barcelona have achieved a new milestone in quantum physics: they were able to entangle three particles of light in a high-dimensional quantum property related to the 'twist' of their wavefront structure. The results from their experiment appear in the journal Nature Photonics.

Entanglement is a counterintuitive property of that has long puzzled scientists and philosophers alike. Entangled quanta of light seem to exert an influence on each other, irrespective of how much distance is between them. Consider for example a metaphorical ice dancer, who has the uncanny ability to pirouette both clockwise and counter-clockwise simultaneously. A pair of entangled ice-dancers whirling away from each other would then have perfectly correlated directions of rotation: If the first dancer twirls clockwise then so does her partner, even if skating in ice rinks on two different continents. "The in our experiment can be illustrated by not two, but three such ice dancers, dancing a perfectly synchronized quantum mechanical ballet," explains Mehul Malik, the first author of the paper. "Their dance is also a bit more complex, with two of the dancers performing yet another correlated movement in addition to pirouetting. This type of asymmetric quantum entanglement has been predicted before on paper, but we are the first to actually create it in the lab."

From fundamentals to applications: Layered quantum cryptography

The scientists created their three-photon entangled state by using yet another quantum mechanical trick: they combined two pairs of high-dimensionally entangled photons in such a manner that it became impossible to ascertain where a particular photon came from. Besides serving as a test bed for studying many fundamental concepts in quantum mechanics, multi-photon entangled states such as these have applications ranging from quantum computing to quantum encryption. Along these lines, the authors of this study have developed a new type of quantum cryptographic protocol using their state that allows different layers of information to be shared asymmetrically among multiple parties with unconditional security. "The experiment opens the door for a future quantum Internet with more than two partners and it allows them to communicate more than one bit per photon," says Anton Zeilinger. Many technical challenges remain before such a quantum communication protocol becomes a practical reality. However, given the rapid progress in quantum technologies today, it is only a matter of time before this type of entanglement finds a place in the quantum networks of the future.

Long-exposure photo of laser beams with a twisted wavefront. The beams have holes in the middle due to destructive interference at the center of the twists. Credit: Faculty of Physics, University of Vienna

A sketch of experimental setup that was used to generate the three-twisted-photon entangled state. Credit: Faculty of Physics, University of Vienna

Explore further: World record for the entanglement of twisted light quanta

More information: Multi-Photon Entanglement in High Dimensions: Mehul Malik, Manuel Erhard, Marcus Huber, Mario Krenn, Robert Fickler, Anton Zeilinger. Nature Photonics, 2016 DOI: 10.1038/nphoton.2016.12.

Related Stories

World record for the entanglement of twisted light quanta

November 2, 2012

(Phys.org)—The Vienna research team led by Anton Zeilinger has achieved a new milestone in the history of quantum physics: The scientists were able to generate and measure the entanglement of the largest quantum numbers ...

Leiden physicists entangle four rotating photons

February 3, 2016

For the first time, scientists have entangled four photons in their orbital angular momentum. Leiden physicists sent a laser through a crystal, thereby creating four photons with coupled 'rotation'. So far this has only been ...

Recommended for you

Uncovering the secrets of water and ice as materials

December 7, 2016

Water is vital to life on Earth and its importance simply can't be overstated—it's also deeply rooted within our conscience that there's something extremely special about it. Yet, from a scientific point of view, much remains ...

Blocks of ice demonstrate levitated and directed motion

December 7, 2016

Resembling the Leidenfrost effect seen in rapidly boiling water droplets, a disk of ice becomes highly mobile due to a levitating layer of water between it and the smooth surface on which it rests and melts. The otherwise ...

The case for co-decaying dark matter

December 5, 2016

(Phys.org)—There isn't as much dark matter around today as there used to be. According to one of the most popular models of dark matter, the universe contained much more dark matter early on when the temperature was hotter. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

VZH
not rated yet Feb 29, 2016
Wasn't that mentioned already a couple of years ago? I believe that 3-photon entanglement experiment is not a news...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.