Determining the structures of nanocrystalline pharmaceuticals by electron diffraction

February 26, 2016
Determining the structures of nanocrystalline pharmaceuticals by electron diffraction
90° cut-off schematic of the camera as designed for the CM200 (Technische Universiteit Delft, The Netherlands). Credit: van Genderen et al

Reliable information about the structure of pharmaceutical compounds is important for patient safety, for the development of related drugs and for patenting purposes. However, working out the structures of pharmaceuticals can be tough. The individual molecules can pack together in the solid in different ways to form different polymorphs, and pertinent properties such as stability, bioavailability or how fast they dissolve in the stomach can vary from one polymorph to another. Single crystals (as used in standard X-ray diffraction experiments) therefore might not be representative of the bulk sample, or indeed might not even be available.

Moreover, the compounds themselves can be damaged by the high energy of the X-radiation used. As electrons are less damaging than X-rays by several orders of magnitude, using electron diffraction should be an attractive alternative, particularly when only nanometre-sized crystals are available. Cooling the sample to liquid-nitrogen temperatures ('cryo-cooling') can also help to minimize , but the compound might change structure on cooling, so the structure that is obtained is not actually that of the material as taken by the patient at .

A group of scientists from a number of European countries have tackled all aspects of these problems by using low-dose electron diffraction, rotating the sample so that individual nanocrystals are not in the electron beam long enough to be damaged and collecting the using a new type of detector developed by CERN [van Genderen et al. (2016), Acta Cryst. A72, DOI: 10.1107/S2053273315022500]. This new detector combines a with a very high signal-to-noise ratio and sensitivity to single electrons. Radiation damage was reduced so much that cooling the sample was not found to be necessary, allowing the team to study the anticonvulsant drug carbamazepine and nicotinic acid (vitamin B3) at room temperature. The data they collected were high enough quality that they could solve the structures of the two compounds using direct methods and software developed for X-ray crystallography.

Based on their experience with these case studies, the authors are planning to improve the design of their experimental setup further, and will also be developing programs specifically designed for handling electron-diffraction data.

Explore further: Twisted X-rays unravel the complexity of helical structures

More information: E. van Genderen et al. structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector , Acta Crystallographica Section A Foundations and Advances (2016). DOI: 10.1107/S2053273315022500

Related Stories

Twisted X-rays unravel the complexity of helical structures

February 9, 2016

Since the discovery of the diffraction of X-rays by crystals just over 100 years ago, X-ray diffraction as a method of structure determination has dominated structural research in materials science and biology. However, many ...

Aperiodic crystals and beyond

June 17, 2015

Once a contradiction in terms, aperiodic crystals show instead that "long-range order" has never been defined. Whatever it means, decades of intense research have shown it to be more complex and surprising than anyone suspected ...

Software for the discovery of new crystal structures

May 11, 2011

A new software called QED (Quantitative Electron Diffraction), which has been licensed by Max Planck Innovation, has now been released by HREM Research Inc., a Japan based company, which is developing products and services ...

The complexity of modeling

November 3, 2015

In recent years, advances in materials synthesis techniques have enabled scientists to produce increasingly complex functional materials with enhanced or novel macroscopic properties. For example, ultra-small core-shell metallic ...

Recommended for you

Uncovering the secrets of water and ice as materials

December 7, 2016

Water is vital to life on Earth and its importance simply can't be overstated—it's also deeply rooted within our conscience that there's something extremely special about it. Yet, from a scientific point of view, much remains ...

Blocks of ice demonstrate levitated and directed motion

December 7, 2016

Resembling the Leidenfrost effect seen in rapidly boiling water droplets, a disk of ice becomes highly mobile due to a levitating layer of water between it and the smooth surface on which it rests and melts. The otherwise ...

The case for co-decaying dark matter

December 5, 2016

(Phys.org)—There isn't as much dark matter around today as there used to be. According to one of the most popular models of dark matter, the universe contained much more dark matter early on when the temperature was hotter. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.