Modern microbial ecosystems provide window to early life on Earth

February 3, 2016
Elongate nested stromatolites, previously unknown in Hamelin Pool. Credit: Pamela Reid, Ph.D., UM Rosenstiel School of Marine and Atmospheric Science

New research from a University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science-led science team provides new insight into one of the world's most diverse and extensive ecosystems of living microbes. The study offers a new perspective on the growth and structure of rare, microbial reefs, called stromatolites, which are a window into the emergence and evolution of life on Earth.

The international research team spent three years collecting data to map one of the few living stromatolite communities in the world, located in Shark Bay in Western Australia. The map of produced by the scientists from an area in Shark Bay, called Hamelin Pool, revealed eight distinct "stromatolite provinces," each characterized by distinct morphological structures, many of which were previously unknown. The results altered previous growth models for Shark Bay stromatolites and documented the importance of mineral precipitation in the formation of the stromatolite framework, a feature shared with Precambrian stromatolites that date back three billion years.

Stromatolites are buildups of limestone, similar to coral reefs, but formed by microbial mats. The activities of the microorganisms, particularly cyanobacteria, result in accretion of grains and precipitation of cements. Fossilized remains of stromatolites hold ancient records of early life for 75 percent of Earth's history. Stromatolite-forming microbes generated the oxygen in the atmosphere that allowed the evolution of higher organisms, including humans.

"The stromatolites in Shark Bay are a spectacular living laboratory that should be the best studied microbial system in the world," said UM Rosenstiel School Professor of Marine Geosciences Pamela Reid, a co-author of the study.

Despite their abundance on early Earth, stromatolites are rare in the modern world and are not well understood. Modern stomatolites, such as those in Shark Bay in Western Australia, develop in extreme, high saline environments where animal grazing and competition with organisms such as corals and seaweeds are scarce.

"The time to study Shark Bay stromatolites is now as they are vulnerable to rising sea levels in the coming decades" said lead author Erica Suosaari, UM Rosenstiel School alumna and current research fellow. "Continued monitoring and detailed studies of the Shark Bay World Heritage site will be critical for management and conservation of this unique landscape, and will advance our understanding of early Earth."

The new findings on morphological diversity, microbial communities, and mineral precipitation in living stromatolites in Shark Bay indicate the importance of this system as a window into early Earth, providing a basis for reconstructing ancient environments and understanding how interacted with these environments.

The study, titled "New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia," was published in the Feb. 3 online edition of the Nature journal Scientific Reports.

Explore further: Stepping stones through time

More information: E. P. Suosaari et al. New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia, Scientific Reports (2016). DOI: 10.1038/srep20557

Related Stories

Stepping stones through time

October 5, 2010

Stromatolites are the most ancient fossils on Earth, and these structures built by microbes can still be found forming today in various places around the globe. Although they provide a straight line of life’s history ...

First Fossil-Makers in Hot Water

March 2, 2010

Microbe mats in Yellowstone's hot springs may be living analogs of the primordial microbe communities that constructed the oldest rock fossils on Earth.

New study suggests angler education can benefit sharks

November 25, 2015

A new study finds fisher education can help protect vulnerable shark populations. The research, led by University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science scientists, showed that recreational anglers ...

Recommended for you

Ten months in the air without landing

October 27, 2016

Common swifts are known for their impressive aerial abilities, capturing food and nest material while in flight. Now, by attaching data loggers to the birds, researchers reporting in the Cell Press journal Current Biology ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.