Insecticide increases effect of varroa mite

February 4, 2016
Insecticide increases effect of varroa mite

Honeybees infected with the Varroa destructor mite have less stamina than those which have been effectively treated against the parasite. Additional exposure to the insecticide Imidacloprid further increases the harmful effect of the varroa mite. This was the conclusion of Wageningen UR scientists Lisa Blanken, Frank van Langevelde and Coby van Dooremalen as published in an article in the British Royal Society's magazine Proceedings B.

'Flight mill'

The scientists performed a unique experiment with various bee colonies. They captured returning to their colony with pollen at the hive opening and fitted a 'harness' to the top of their thorax. The bees were then attached to a smoothly running mill with a counterweight. "Imagine the bee version of a treadmill for horses," Van Dooremalen explains.

Combination of stressors

The bees flew circles in the mill while their flight speed and total distance were registered. Van Dooremalen: "This experiment showed that 'clean' bees – bees from colonies that had been treated against varroa – flew the fastest and farthest. Bees with a substantial varroa infection flew significantly shorter distances. Clean bees that were also given a realistic dose of Imidacloprid via sugar water in the colony flew as far and as fast as the control group. But when bees infected with varroa were given the same dose of Imidacloprid, they flew less far and for an even shorter time than bees that were only infected with varroa."

Debate

There has long been a debate about the effects on honeybees of Imidacloprid and other pesticides from the group of so-called neonicotinoids. Many of the experiments that show negative effects of these products on honeybees have been performed with a dose of pesticide far larger than bees would pick up in the wild, however. Van Dooremalen: "The bees in our experiment were fed with a weekly 660 ml of sugar water that contained six micrograms of Imidacloprid per litre. This is a realistic dose which could be picked up by bees in the field if they only forage on crops treated with the product."

Effect in the field

Now that the measurable effect of a neonicotinoid on the flight capacity of bees infected with varroa has been shown, the next step is to study the consequences thereof on a colony in the field. "A bee that cannot fly so far will bring less food to the colony," Van Dooremalen continues. "It is therefore conceivable that a colony with varroa, which is also exposed to neonicotinoids, starts the winter in poorer health than colonies not exposed to the insecticide, and thus experiences more deaths. Whether this effect actually occurs in practice needs to be investigated in follow-up research."

Fighting varroa

Jan Dommerholt, chairman of the Dutch Beekeepers Association, is very interested in the research performed by Van Dooremalen and her colleagues. "I am not necessarily surprised that an insecticide affects ," says Dommerholt. "What is remarkable is that this is especially the case when it is combined with a varroa infection. I believe the research underlines how important it is to fight varroa mites in the right way."

The research was financed from the budget for Policy-oriented Research from the Dutch Ministry of Economic Affairs.

Explore further: Research confirms Varroa mite bad news for Aussie bees

Related Stories

Research confirms Varroa mite bad news for Aussie bees

June 25, 2012

The worst fears of Australia's honeybee industry have been realised, with new research confirming that Australian honeybees are highly susceptible to a pest that hasn't yet reached our shores but will potentially devastate ...

Parasite-free honey bees enable study of bee health

July 1, 2014

An international team of researchers has discovered honey bee colonies in Newfoundland, Canada, that are free of the invasive parasites that affect honey bees elsewhere in the world. The populations offer a unique opportunity ...

Of bees, mites, and viruses

August 21, 2014

Honeybee colonies are dying at alarming rates worldwide. A variety of factors have been proposed to explain their decline, but the exact cause—and how bees can be saved—remains unclear. An article published on August ...

Common insecticide may not harm bumble bees

December 22, 2015

Investigators have found no effect of an insecticide called thiamethoxam on bumble bees that forage on flowering winter oilseed rape. Using realistic field conditions, the researchers treated seeds of oilseed rape with the ...

Recommended for you

How Lyme disease bacteria spread through the body

August 25, 2016

Researchers have developed a live-cell-imaging-based system that provides molecular and biomechanical insights into how Lyme disease bacteria latch onto and move along the inside surface of blood vessels to reach key destinations ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.