Hitomi spacecraft to enable unprecedented views of the violent universe

February 22, 2016
Optical (left) and X-ray image (right) of the Crab Nebula, the remnant of a supernova explosion that was seen on Earth in 1054 AD. At the center of the bright nebula is a rapidly spinning neutron star, or pulsar. Visible and X-ray light reveal completely different, complementary details about the nebula. Credit: Palomar Observatory, Right: NASA/Chandra X-ray Observatory/Smithsonian Astrophysical Observatory

Although the star-covered night sky is regarded by many as a synonym of serenity, the cosmos is in fact a rather hostile place. It hosts many extreme environments that would instantaneously eradicate any life nearby. A new space mission is about to reveal this violent nature in greater detail than ever before: On Feb. 17, the Japan Aerospace Exploration Agency (JAXA) launched its ASTRO-H satellite – a very precise and sensitive eye for X-rays emerging from hot and energetic processes in space. After its successful lift-off, the spacecraft was renamed "Hitomi," which means "pupil of the eye" in Japanese.

The observatory will collect the X-ray signals of countless cosmic objects from its orbit around the Earth, including hot gas in , powerful particle streams spit out by , and the remnants of supernova explosions with very dense, rapidly rotating neutron stars at their center. These data will provide new insights into many aspects of astrophysics and cosmology, such as the physics of black holes, the formation of chemical elements, stars and galaxies, and the evolution of the universe itself.

"The launch of Hitomi represents the beginning of a new era for X-ray observatories," says Roger Blandford from the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), a joint institute of Stanford University and the Department of Energy's SLAC National Accelerator Laboratory. "Its novel instruments will allow us to make new discoveries involving dark matter, dark energy, black holes and neutron stars."

The X-ray satellite was developed by a large international collaboration, led by JAXA and with NASA as a principal partner. KIPAC researchers were involved in the prototyping of one of the observatory's scientific instruments, the development of methods used for instrument calibration and the planning of the mission's science program.

Seeing More of the Universe with X-rays

X-rays are an energetic form of light. They are emitted by matter under extreme conditions, such as high temperature, strong gravity, fast rotation, violent collisions, tremendous explosions, strong magnetic fields and nuclear reactions. Observations of cosmic X-ray sources provide astrophysicists with the opportunity to identify and study these extreme environments.

The video will load shortly
Recorded live broadcast of the launch of the X-ray satellite ASTRO-H on board H-IIA Launch Vehicle No. 30 from the Tanegashima Space Center in Japan at 5:45 p.m. local time (12:45 a.m. Pacific Standard Time) on Feb. 17. Fast-forward 20 minutes into this video to see the take-off. After the successful launch, ASTRO-H was renamed “Hitomi” – Japanese for “pupil of the eye.” The satellite is a precise and sensitive “eye” for X-rays emerging from hot and energetic processes in space and will provide new insights into many aspects of astrophysics and cosmology. Credit: Japanese Aerospace Exploration Agency

X-rays also paint a different and complementary picture of the universe compared to other light. Visible light, for instance, is not powerful enough to shine through dense clouds of dust – seemingly impenetrable curtains for objects behind them. Energetic X-rays, on the other hand, can go right through these clouds and lift the curtain.

Moreover, X-rays can reveal the chemical composition of extreme states of matter because each chemical element leaves a unique fingerprint on the X-ray emission signal. Hitomi will detect these fingerprints with 30 times better resolution than any other X-ray observatory before.

"We'll now be able to identify specific elements without any doubt, whereas in the past we couldn't quite tell," says KIPAC's Grzegorz Madejski. But researchers will learn even more than that, he says. Hitomi's superior energy resolution will also reveal tiny shifts in the energy of the X-ray signals – so-called Doppler shifts linked to the speed of the observed material.

Artist impression of a supermassive black hole, located at the center of a galaxy, as it devours the surrounding material and also diverts part of it away through powerful winds and jets. Credit: European Space Agency/ATG medialab

Seeking Answers to Fundamental Questions about the Universe

Chemical composition and speed are key information for scientists who want to understand the history of our universe.

"We'll be able to tell whether the motion of hot gas in galaxy clusters is steady or turbulent," says KIPAC's Steve Allen. "This motion is an important ingredient in our models of galaxy formation, which, in turn, impact our picture of cosmic evolution."

This illustration shows the locations and energy ranges of ASTRO-H (now Hitomi) science instruments and their associated telescopes. One kiloelectronvolt (keV) is hundreds of times the energy of visible light. Credit: Japanese Aerospace Exploration Agency/NASA

Hitomi will also shine light on winds of hot gas in the vicinity of black holes. Astrophysicists believe that the elemental composition of gas might be different near the matter-devouring objects, and unearthing these variations could advance our understanding of how chemical elements have formed in the universe.

The new X-ray observatory's outstanding energy resolution is also expected to help researchers decide whether or not an X-ray signal with an energy of approximately 3.5 kiloelectronvolts, which has been caught emanating from a number of galaxies and galaxy clusters, could reveal the nature of dark matter, an invisible form of matter that makes up 85 percent of all matter in the universe.

Enabling Discovery with State-of-the-Art Scientific Instruments

Many of these research capabilities are associated with Hitomi's Soft X-ray Spectrometer (SXS), which is at the heart of the observatory's unsurpassed energy resolution and will analyze the energies of X-ray emissions in greater detail than ever before.

SXS is joined by three other instruments: the Soft X-ray Imager (SXI) and Hard X-ray Imager (HXI), which will photograph sources that emit X-rays of low and high energy, respectively, as well as the Soft Gamma-ray Detector (SGD), which will observe light of even higher energies.

"The SGD instrument has a very novel design and will allow us for the first time to measure the polarization of X-ray emissions," says KIPAC's Hirokazu Odaka. "This property will tell us more about the shape of the X-ray sources and their magnetic fields."

A number of KIPAC researchers were involved in developing the SGD instrument and its read-out electronics. Together with SLAC's Makoto Asai, who leads the lab's team for Geant4, a toolkit for the simulation of particles passing through matter, they also carefully modeled SGD's sensitivity and background signals – an important step toward calibrating the instrument for precise X-ray measurements.

Scientists around the world are now getting ready to use Hitomi, which is scheduled to operate for at least three years. Following an initial operation and calibration period of three months, the Hitomi science working group, including KIPAC scientists, will begin first observations. After six months, the observatory will be open to all scientists, and observation time will be based on submitted research proposals.

Explore further: Andromeda galaxy scanned with high-energy X-ray vision

Related Stories

Andromeda galaxy scanned with high-energy X-ray vision

January 5, 2016

NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, has captured the best high-energy X-ray view yet of a portion of our nearest large, neighboring galaxy, Andromeda. The space mission has observed 40 "X-ray binaries"—intense ...

ASTRO-H satellite ready for launch

January 14, 2016

On 12 January 2016, the Japan Aerospace Exploration Agency (JAXA) presented their ASTRO-H satellite to the media at the Tanegashima Space Center, situated on a small island in the south of Japan. The satellite, developed ...

Integral X-rays Earth's aurora

January 26, 2016

Normally busy with observing high-energy black holes, supernovas and neutron stars, ESA's Integral space observatory recently had the chance to look back at our own planet's aurora.

New clues in the hunt for the sources of cosmic neutrinos

February 18, 2016

The sources of the high-energy cosmic neutrinos that are detected by the IceCube Neutrino Observatory buried in the Antarctic ice may be hidden from observations of high-energy gamma rays, new research reveals. These high-energy ...

Recommended for you

Rosetta captures comet outburst

August 25, 2016

In unprecedented observations made earlier this year, Rosetta unexpectedly captured a dramatic comet outburst that may have been triggered by a landslide.

Rocky planet found orbiting habitable zone of nearest star

August 24, 2016

An international team of astronomers including Carnegie's Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System. The new world, designated Proxima b, orbits its cool ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

vidyunmaya
1 / 5 (2) Feb 23, 2016
sub: Necessity-Demand structure-cosmological index-Reference Frame
Beyond black-hole and gravity psychology- cosmology studies need to progress to catch-up with creative
Dimensional knowledge of the universe to identify Cosmological index. origins-cosmology vedas interlinks
help Alfven's quest -magnetic universe -from van-Allen belts to milky-way that interlinks heartof the universe
HITOMI is a welcome trend in this direction. plasma regulated electromagnetic phenomena in magnetic field environment
can enlighten through milky-Way Galactic Frame
http://www.scribd...del-2003
http://www.scribd...rse-2003
T2Nav
5 / 5 (3) Feb 23, 2016
Wishing my iMac's translator could do Schizo-to-English. :) Seriously though, I am looking forward to great science and fascinating images from Astro-H.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.