A highway for spin waves: Team develops process for controlling innovative information media

February 1, 2016
The spin wave remains trapped in the domain wall, which is formed in the middle between the differently oriented magnetizations. Researchers at the HZDR could thus control its propagation purposefully. Credit: HZDR / H. Schultheiß

The success story of information processing by way of moving electrons is slowly coming to an end. The trend towards more and more compact chips constitutes a major challenge for manufacturers, since the increasing miniaturization creates partly unsolvable physical problems. This is why magnetic spin waves could be the future: they are faster than electronic charge carriers and use less power. Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and TU Dresden have developed a method for controlling the propagation of these information carriers at the nanolevel in a targeted and simple way; so far, this required a lot of power. They have thus created a basis for nanocircuits that use spin waves.

"Our current is based on electrons," explains Dr. Helmut Schultheiß from the HZDR's Institute of Ion Beam Physics and Materials Research. "These charged particles flow through the wires, creating electric currents. Yet in the process they collide with atoms and lose energy, which escapes into the crystal lattice in the form of heat. This means that chips get all the warmer, the closer the elements on them are grouped together. Eventually they fail, because the heat cannot be conveyed anymore." This is why Schultheiß, head of an Emmy Noether Junior Research Group, pursues a different approach: information transport via spin waves, also known as magnons.

The magnetic moment of electrons

Spin is the term scientists use to describe the angular momentum of electrons revolving around their own axis. It makes the electric particles behave like extremely small magnets. This is why they align in a parallel manner in ferromagnetic materials. "If one guides a spin in a different direction, this will have an impact also on the neighboring spins," Schultheiß explains. "This creates a spin wave that travels through the . It can be used to transport and process information just like flowing charge carriers." However, the electrons themselves do not move in this case. "They do not collide with anything and therefore generate hardly any heat."

Yet in order to prevail in the race for future information processing methods, systems are needed that allow for controlling the propagation of spin waves at the nanolevel. "So far, approaches to a solution were based either on geometrically predefined conductor paths or on the permanent use of ," says Schultheiß, explaining the current state of research. "In the case of the first solution, the propagation path cannot be changed; however this is necessary for the development of flexible circuits. The second method solves that problem, yet at the price of an enormous increase in power consumption."

Controlled propagation path

The scientists have successfully developed a new procedure for the targeted steering of spin waves by utilizing basic magnetic characteristics: remanence, that is, the residual magnetism that a solid body retains after the removal of a magnetic field, and the formation of so-called domain walls. "This term denotes the area in solid bodies where differently aligned magnetic domains meet," Schultheiß explains. The HZDR researchers created such a domain wall within a nickel-iron alloy nanostructure in an experiment. They then triggered a spin wave using microwaves. As their tests have shown, the spin waves of a certain frequency got stuck in the domain wall, because the different magnetic domains act as barriers. "In a sense, one could say that we created a road with a crash barrier along which the spin waves travel in a controlled manner," Schultheiß cheerfully describes the result.

However, the Dresden physicists were able to celebrate yet another success. They manipulated the course of the domain wall by way of small external magnetic fields of far below one millitesla, about one hundred times weaker than a commercial horseshoe magnet. In doing so, they likewise manipulated the propagation of the . "This could be the basis for a design of reconfigurable nanocircuits that uses magnons," Schultheiß says, sizing up the options. Even so, the researcher thinks that several years are likely to pass before application. "We are still in the basic research phase. However, our results reveal that we are onto a good thing."

Explore further: Researchers take magnetic waves for a spin

More information: K. Wagner, A. Kákay, K. Schultheiss, A. Henschke, T. Sebastian, H. Schultheiss, "Magnetic domain walls as reconfigurable spin-wave nanochannels", Nature Nanotechnology, 2016, DOI: 10.1038/nnano.2015.339

Related Stories

Researchers take magnetic waves for a spin

January 29, 2014

Researchers at New York University have developed a method for creating and directing fast moving waves in magnetic fields that have the potential to enhance communication and information processing in computer chips and ...

Ultrafast heat conduction can manipulate nanoscale magnets

June 8, 2015

Researchers at the University of Illinois at Urbana-Champaign have uncovered physical mechanisms allowing the manipulation of magnetic information with heat. These new phenomena rely on the transport of thermal energy, in ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.