Graphene slides smoothly across gold

February 25, 2016
A graphen nanoribbon was anchored at the tip of a atomic force microscope and dragged over a gold surface. The observed friction force was extremely low. Credit: University of Basel, Department of Physics

Graphene, a modified form of carbon, offers versatile potential for use in coating machine components and in the field of electronic switches. An international team of researchers led by physicists at the University of Basel have been studying the lubricity of this material on the nanometer scale. Since it produces almost no friction at all, it could drastically reduce energy loss in machines when used as a coating, as the researchers report in the journal Science.

In future, graphene could be used as an extremely thin coating, resulting in almost zero between mechanical parts. This is based on the exceptionally high lubricity—or so-called superlubricity—of modified carbon in the form of graphene. Applying this property to mechanical and electromechanical devices would not only improve energy efficiency but also considerably extend the service life of the equipment.

Fathoming out the causes of the lubricant behavior

An international community of physicists from the University of Basel and the Empa have studied the above-average lubricity of graphene using a two-pronged approach combining experimentation and computation. To do this, they anchored two-dimensional strips of carbon atoms—so-called graphene nanoribbons—to a sharp tip and dragged them across a . Computer-based calculations were used to investigate the interactions between the surfaces as they moved across one another. Using this approach, the research team led by Prof. Ernst Meyer at the University of Basel is hoping to fathom out the causes of superlubricity; until now, little research has been carried out in this area.

By studying the graphene ribbons, the researchers hope to learn about more than just the slip behavior. Measuring the mechanical properties of the carbon-based material also makes sense because it offers excellent potential for a whole range of applications in the field of coatings and micromechanical switches. In future, even could be replaced by nanomechanical switches, which would use less energy for switching on and off than conventional transistors.

The experiments revealed almost perfect, frictionless movement. It is possible to move graphene ribbons with a length of 5 to 50 nanometers using extremely small forces (2 to 200 piconewtons). There is a high degree of consistency between the experimental observations and the computer simulation.

A discrepancy between the model and reality appears only at greater distances (five nanometers or more) between the measuring tip and the gold surface. This is probably because the edges of the graphene nanoribbons are saturated with hydrogen, which was not accounted for in the simulations.

"Our results help us to better understand the manipulation of chemicals at the nano level and pave the way for creating frictionless coatings," write the researchers.

Explore further: Graphene and diamonds prove a slippery combination

More information: "Superlubricity of graphene nanoribbons on gold surfaces" Science, DOI: 10.1126/science.aad3569

Related Stories

Graphene and diamonds prove a slippery combination

May 25, 2015

Scientists at the U.S. Department of Energy's Argonne National Laboratory have found a way to use tiny diamonds and graphene to give friction the slip, creating a new material combination that demonstrates the rare phenomenon ...

Is graphene hydrophobic or hydrophilic?

August 18, 2015

The National Physical Laboratory's (NPL) Quantum Detection Group has just published research investigating the hydrophobicity of epitaxial graphene, which could be used in the future to better tailor graphene coatings to ...

Successful boron-doping of graphene nanoribbon

August 27, 2015

Physicists at the University of Basel succeed in synthesizing boron-doped graphene nanoribbons and characterizing their structural, electronic and chemical properties. The modified material could potentially be used as a ...

Graphene nanoribbons get metallic

December 16, 2015

Researchers at Aalto University have succeeded in experimentally realizing metallic graphene nanoribbons (GNRs) that are only 5 carbon atoms wide. In their article published in Nature Communications, the research team demonstrated ...

A new way to make higher quality bilayer graphene

February 8, 2016

(Phys.org)—A team of researchers with members from institutions in the U.S., Korea and China has developed a new way to make bilayer graphene that is higher in quality than that produced through any other known process. ...

Recommended for you

Neuromorphic computing mimics important brain feature

August 18, 2016

(Phys.org)—When you hear a sound, only some of the neurons in the auditory cortex of your brain are activated. This is because every auditory neuron is tuned to a certain range of sound, so that each neuron is more sensitive ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

SciTechdude
5 / 5 (1) Feb 25, 2016
That already makes me think of visions of solid graphene cores surrounded by a spinning drum of gold or gold alloyed with copper to generate an electrical field or the like.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.