Exoskeleton helps the paralyzed to walk

February 5, 2016
Steven Sanchez, who was paralyzed from the waist down after a BMX accident, wears SuitX’s Phoenix. “If I had this it would change a lot of things,” he says. Credit: SuitX

Until recently, being paralyzed from the waist down meant using a wheelchair to get around. And although daily life is more accessible to wheelchair users, they still face physical and social limitations. But UC Berkeley's Robotics and Human Engineering Laboratory has been working to change that.

The robotics lab, a team of graduate students led by mechanical engineering professor Homayoon Kazerooni, has been working for more than a decade to create robotic exoskeletons that allow those with limited mobility to walk again.

This week, a new, lighter and more agile exoskeleton, for which the Kaz lab developed the original technology, was unveiled earlier this week: The Phoenix, by SuitX, a company that has spun off the robotics lab. Kazerooni is its founder and CEO.

The Phoenix is lightweight, has two motors at the hips and electrically controlled tension settings that tighten when the wearer is standing and swing freely when they're walking. Users can control the movement of each leg and walk up to 1.1 miles per hour by pushing buttons integrated into a pair of crutches. It's powered for up to eight hours by a battery pack worn in a backpack.

"We can't really fix their disease," says Kazerooni. "We can't fix their injury. But what it would do is postpone the secondary injuries due to sitting. It gives a better quality of life."

Over ten years in the making

Kazarooni and his team have developed a series of exoskeletons over the years. Their work in the field began in 2000 with a project funded by the Defense Advanced Research Projects Agency to create a device, now called the Berkeley Lower Extremity Exoskeleton (BLEEX), that could help people carry heavier leads for longer. At that time, Kazerooni also realized the potential use for exoskeletons in the medical field, particularly as an alternative to wheelchairs.

The team began developing new devices to restore mobility for people who had become paraplegic.

In 2011, they made the exoskeleton that helped Berkeley senior Austin Whitney, paralyzed from the waist down in a 2007 car accident, make an epic walk across the graduation stage to receive his diploma. Soon after, the Austin Project was created in honor of Whitney, with a goal of finding new technologies to create reliable, inexpensive systems for everyday personal use.

Today, the Phoenix is one of the lightest and most accessible exoskeletons to hit the market. It can be adjusted to fit varied weights, heights and leg sizes and can be used for a range of mobility hindrances. And, although far from inexpensive at $40,000, it's about the half the cost of other exoskeletons that help restore mobility.

Explore further: Robotic exoskeletons to be demonstrated by everyday users at No Barriers Summit

Related Stories

Engineering an affordable exoskeleton

June 12, 2014

When soccer's World Cup—the most-watched sports event on Earth—kicks off June 12, Berkeley professor Homayoon Kazerooni and his research assistants won't be watching the players. They'll be staring at the person with ...

Custom tailoring robotic exoskeletons that fit to perfection

January 28, 2015

It wasn't too long ago that the idea of a wearable robot that would lend its user increased mobility and strength seemed like the stuff of science fiction; indeed, films like Aliens and Iron Man, which featured characters ...

Exoskeleton to ensure an active old age

October 15, 2015

Researchers from Aalborg University are involved in an international project to develop portable robot skeletons for the elderly so they can continue to be active longer. Think of it as a tool, not as a robot, says researcher.

Recommended for you

Apple issues update after cyber weapon captured

August 26, 2016

Apple iPhone owners on Friday were urged to install a quickly released security update after a sophisticated attack on an Emirati dissident exposed vulnerabilities targeted by cyber arms dealers.

Sponge creates steam using ambient sunlight

August 22, 2016

How do you boil water? Eschewing the traditional kettle and flame, MIT engineers have invented a bubble-wrapped, sponge-like device that soaks up natural sunlight and heats water to boiling temperatures, generating steam ...

Auto, aerospace industries warm to 3D printing

August 25, 2016

New 3D printing technology unveiled this week sharply increases the size of objects that can be produced, offering new possibilities to remake manufacturing in the auto, aerospace and other major industries.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.