Clean energy from water

February 8, 2016

Fuel cells generate electrical energy through a chemical reaction of hydrogen and oxygen. To obtain clean energy, the splitting of water into its components of hydrogen and oxygen is critical. Researchers at the University of Basel study how sunlight can be used for this purpose. The scientific journal Chemical Communications published their latest results.

Developing clean and renewable sources of energy is one of the greatest challenges of our civilization. Artificial photosynthesis is one of the most promising approaches. This is when water is photo-electrochemically with the aid of sunlight separated into its components H2 and O2 and stored. When the chemical elements are later combined, can be created. A team of researchers led by the University of Basel chemists Catherine Housecroft and Edwin Constable are working together with the Swiss Federal Laboratories for Materials Science and Technology (Empa) to implement this method.

Sustainable fuel cells

The process of splitting water (H2O) consists of two partial reactions, which are implemented with the help of different catalysts: water oxidation (which produces O2) and water reduction (which produces H2). The first is the more challenging of the two reactions, which is why research puts so much effort into the development of efficient and sustainable water oxidation catalysts.

An important factor in creating photo-electrochemical fuel cells is the precise arrangement of the individual components. "If you don't do this, it's like throwing all the different parts of a clock into a bag, giving it a shake and then hoping it will be possible to tell the time," explains Prof. Edwin Constable from the University of Basel.

To determine the perfect arrangement of the catalysts, the Basel-based chemists developed a model in their current study which, although powered by electricity, generates the same chemical intermediate states as light. To accomplish this, they used compounds of the element ruthenium as a catalyst. The critical feature is the self-assembly of the individual components in a hierarchical structure. The researchers thus succeeded in simulating fuel cells powered by light radiation. This model allowed them to test the position and efficiency of the individual components.

Explore further: New fuel-cell materials pave the way for practical hydrogen-powered cars

More information: Rita Tóth et al. A self-assembled, multicomponent water oxidation device, Chem. Commun. (2016). DOI: 10.1039/c5cc09556e

Related Stories

Solar-powered hydrogen production with improved efficiency

December 22, 2015

Hydrogen could potentially provide a readily available, clean form of energy derived from solar power. To achieve this, scientists need to find a highly efficient, low-cost way of splitting water into its constituent parts ...

Researchers seek efficient means of splitting water

February 5, 2016

Photovoltaics promise to help meet our energy needs by turning sunlight into electricity. We can't run everything that way, but with a little tweaking, photovoltaic materials can use solar energy to split water into hydrogen ...

Recommended for you

A composite thread that varies in rigidity

October 27, 2016

EPFL scientists have developed a new type of composite thread that varies in stiffness depending on its temperature. Applications range from multifunctional robots to knitted casts, and even tunable medical devices.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.