Helping to turn waste heat in electricity

February 3, 2016
The resonant structure of electron scattering on the bismuth lattice.

At the atomic level, bismuth displays a number of quirky physical phenomena.. A new study reveals a novel mechanism for controlling the energy transfer between electrons and the bismuth crystal lattice. Mastering this effect could, ultimately, help convert waste heat back into electricity, for example to improve the overall efficiency of solar cells. These findings have now been published in EPJ B by Piotr Chudzinski from Utrecht University, the Netherlands.

The author investigates the collective motion of electrons in bismuth, which behaves in a fluid manner with waves propagating in it, a phenomenon referred to as a low energy plasmon. Electrons moving throughout the material constantly aim to preserve the same density. Bismuth exhibits two types of electrons—extremely light ones and heavier ones— moving at different speeds. As a result, an area of less dense electron liquid is formed. In response, electrons move back to compensate at the lower density end. Yet, some of them move faster than others. And a more sparsely dense area appears in another part of the material. And so on and so forth...

This study demonstrates that the low energy plasmons, when tuned to the same wavelength as the lattice vibrations of the bismuth crystal, or phonons, can very efficiently slow lattice motion. In essence, this plasmon-phonon coupling mechanism, once intensified under specific conditions, could be a new way of transferring energy between and the underlying crystal lattice.

One implication is that the plasmon-phonon coupling can help to explain a long-since observed, significant effect in bismuth: the so-called Nernst effect. This occurs when a sample is warmed on one side and subjected to a magnetic field, causing it to produce a significant electrical voltage in the perpendicular direction. Hence it turns heat into useful electricity. Within the new interpretation the Nernst effect scales up with temperature in a manner that is in line with experimental observations in , lending strong support to the theory.

Explore further: A step towards energy-efficient voltage control of magnetic devices

More information: Piotr Chudzinski. Resonant plasmon-phonon coupling and its role in magneto-thermoelectricity in bismuth, The European Physical Journal B (2015). DOI: 10.1140/epjb/e2015-60674-3

Related Stories

One material, two types of magnetism

November 22, 2012

When placed next to a bar magnet, an aluminum ball draws gently towards the magnet. In contrast, a ball made of silver moves out of the magnetic field. The mechanisms underlying these different behaviors are known as paramagnetism ...

Scalable growth of high quality bismuth nanowires

December 11, 2014

Bismuth nanowires have intriguing electronic and energy-harvesting application possibilities. However, fabricating these materials with high quality and in large quantities is challenging.

Change of perspective in the electronic landscape

June 3, 2014

Time and again, even simple materials take physicists by surprise. Researchers at the Max Planck Institute for Chemical Physics of Solids in Dresden have observed an electronic property in the metal bismuth which they expected ...

Recommended for you

Electron highway inside crystal

December 8, 2016

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their ...

Researchers improve qubit lifetime for quantum computers

December 8, 2016

An international team of scientists has succeeded in making further improvements to the lifetime of superconducting quantum circuits. An important prerequisite for the realization of high-performance quantum computers is ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.