Snakes show that eating can be bad for your health

January 5, 2016
A corn snake eating a meal. Though it looks bad for the mouse, this snake will also pay a price in oxidative damage. Credit: Dr. Zach Stahlschmidt

Eating is essential for life. Animals must eat to live, grow, and reproduce. But like most things, eating comes with tradeoffs. Dr. Zach Stahlschmidt of the University of the Pacific and his colleagues have found that along with the benefits of eating, there's a price to pay.

This price is oxidative damage—damage caused by an increase in chemically reactive molecules containing oxygen that result in harm to cells and DNA. This harm is severe enough that it's believed that its accumulation over time contributes to aging. Surprisingly, says Stahlschmidt, this cost of eating has been gravely overlooked.

"It seemed like this is a hidden piece of the puzzle that no one had investigated that might be really important, for lots of reasons," Stahlschmidt says.

But in order to look for oxidative damage during eating, Stahlschmidt and his had to compare the amount of in an organism during digestion and well after the animal was done absorbing a meal. Otherwise, it would be difficult to tell what the 'normal' amount of circulating reactive in the animal's body was. So they had to work with an organism that didn't feed continuously. Snakes, which several times a week or up to months apart, turned out to be ideal.

The team worked with the corn snake Pantherophis guttatus, a commonly studied snake that can be fed one mouse every two weeks. Because the corn snake's digestion and metabolism has been well-studied, the team knew exactly when to draw blood at peak digestion and post-absorption times. This enabled them to discover how the amount of oxidative damage was changing over time.

What Stahlschmidt and his collaborators found was unexpected. In the corn snakes, oxidative damage increased by almost 180% during digestion. However, antioxidant capacity, the ability of the body to fight the damaging effects of the oxidizing molecules, only increased by 6%. So every time these ate, they were accruing damage. What was surprising was that even though feeding was something the snakes were doing regularly, their bodies were not balancing the oxidative damage with an equal amount of protective support.

"The levels of damage we saw were really similar to or exceeded—by quite a bit—things as stressful as flying 200 kilometers in a bird, or mounting an . Both of these things seem really stressful and may induce oxidative damage, and they do, but much less than actually eating a meal," Stahlschmidt says.

Stahlschmidt and his team think that what might be causing the damage is the . The immune system may kick in when animals eat, releasing reactive oxygen molecules to kill microbes on food, helping to protect from disease. But the molecules also affect the cells of the animal ingesting the food, by damaging the DNA, proteins, and other critical parts of the cells in their body.

Stahlschmidt says the increased immune response during feeding makes sense, "You're ingesting something with microbes all over it and inside it."

So the immune system, which is normally considered to be working to protect us, is causing both help and harm, a tradeoff that could be affecting more animals than just snakes. All animals eat, and oxidative damage during eating could play a larger role in evolution than previously thought.

Stahlschmidt believes that this larger role may be in shaping the life history evolution of species. Life history traits are the things in an animal's life that affect life expectancy – critical issues like reproduction, growth, and survival.

Stahlschmidt says that many life history traits are associated with oxidative damage. And life history evolution involves strategic tradeoffs in terms of how an animal is using resources across these traits. If an animal uses most of its resources for reproduction, it can't use them to grow. If oxidative damage is more or less of a cost of any or all of these traits, that may affect the life history evolution of the animal.

"Lots of these major tradeoffs or shifts that we are seeing between traits are underlied by oxidative stress or antioxidant capacity—some kind balancing act," Stahlschmidt says.

Stahlschmidt and his collaborators suggest that their results from one species of snake could have ramifications for different animals and other types of studies examining the role of oxidative damage during other activities, such as flying and immune response. Unless the digestive status of the animal in the study is known, it's possible that oxidative damage from digestion could provide misleading data.

The question brought up by this research is how prevalent this trend is across other types of animals—whether all species deal with such high levels of oxidative when they eat is an open question. Eating is necessary for all animals, but perhaps there is cost to every benefit.

Explore further: Does presence of oxidants early in life help determine life span?

Related Stories

Recurrent aphthous stomatitis linked to oxidative stress

December 8, 2015

(HealthDay)—Recurrent aphthous stomatitis is associated with increased total oxidative status and oxidative stress index values, according to a study published online Dec. 1 in the International Journal of Dermatology.

Recommended for you

How Lyme disease bacteria spread through the body

August 25, 2016

Researchers have developed a live-cell-imaging-based system that provides molecular and biomechanical insights into how Lyme disease bacteria latch onto and move along the inside surface of blood vessels to reach key destinations ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.