Recipe for muon pair creation, in theory

January 19, 2016
Recipe for muon pair creation, in theory

A true-muonium only lives for two microseconds. These atoms are made up one positively and one negatively charged elementary particle, also known as muons. Although they have yet to be observed experimentally, a Japanese theoretical physicist has come up with new ways of creating them, in principle, via particle collisions. The first method involves colliding a negatively charged muon and a muonium atom made up of a positive muon and an electron. The second involves colliding a positively charged muon and a muonic hydrogen atom made up of a proton and a negative muon. The author found that the second option offers the most promising advances for muonium detection. These findings have been published in EPJ D by Kazuhiro Sakimoto from the Japan Aerospace Exploration Agency in Kanagawa.

In this study, Sakimoto performs theoretical calculations using the semi-classical method for describing the dynamics dominated by the first process. In such cases, the distance between the negative and positive muons is treated as a classical variable and the remaining degrees of freedom are described by quantum mechanics.

Subsequently, the muon exchange dynamics in the second approach involving a positively charged muon colliding with a muonic hydrogen rely on simulations relying on the so-called classical-trajectory Monte-Carlo(CTMC) method. The degrees of freedom in such instances are described using classical mechanics.

This theoretical study is relevant for experiments with low-energy muon beams as part of the Ultra Slow Muon project at J-PARC MUSE. Furthermore, analysing muoniums via spectroscopic methods can be useful to perform high-precision tests related to a theory called Quantum ElectroDynamics (QED). The precision of previous measurements based on was limited by uncertainties related to the internal structure of the inside its nucleus. This matters for a particular type of measurement of the proton size, called 'proton radius puzzle', that has remained unsolved over the past five years. So far, two different measuring techniques have yielded two different measures for the proton size.

Explore further: Particle physics: 'Honey, I shrunk the proton'

More information: Kazuhiro Sakimoto. Theoretical study of true-muonium μ + μ − formation in muon collision processes μ − + μ +e− and μ + + pμ −, The European Physical Journal D (2015). DOI: 10.1140/epjd/e2015-60427-6

Related Stories

Particle physics: 'Honey, I shrunk the proton'

July 7, 2010

Scientists lobbed a bombshell into the world of sub-atomic theory on Wednesday by reporting that a primary building block of the visible Universe, the proton, is smaller than previously thought.

Physicists confirm surprisingly small proton radius

January 24, 2013

International team of physicists confirms surprisingly small proton radius with laser spectroscopy of exotic hydrogen. The initial results puzzled the world three years ago: the size of the proton (to be precise, its charge ...

Proton radius puzzle may be solved by quantum gravity

November 26, 2013

( —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, ...

Muons help understand mechanism behind hydrogen storage

November 18, 2014

It is ever more necessary to find alternative ways to store energy. Energy storage is required when energy is supplied intermittently, as for instance for wind power, or for mobile applications like cars. Hydrogen is a promising ...

Anti-hydrogen origin revealed by collision simulation

January 18, 2016

Antihydrogen is a particular kind of atom, made up of the antiparticle of an electron—a positron—and the antiparticle of a proton—an antiproton. Scientists hope that studying the formation of anti hydrogen will ultimately ...

Recommended for you

Possibility of new particle discovery at LHC fading

June 24, 2016

The physics community is apparently starting to lose its buzz over the possibility of the discovery of a new particle by researchers working at the CERN LHC facility near Geneva. As more data is studied, it appears more and ...

The switch that could double USB memory

June 24, 2016

Scientists at Hokkaido University have developed a device that employs both magnetic and electronic signals, which could provide twice the storage capacity of conventional memory devices, such as USB flash drives.

Russian physicists create a high-precision 'quantum ruler'

June 24, 2016

Physicists from the Russian Quantum Center (RQC), MIPT, the Lebedev Physical Institute, and L'Institut d'Optique (Palaiseau, France) have devised a method for creating a special quantum entangled state. This state enables ...

Algorithm ensures that random numbers are truly random

June 24, 2016

(—Generating a sequence of random numbers may be more difficult than it sounds. Although the numbers may appear random, how do you know for sure that they don't actually follow some complex, underlying pattern? ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jan 19, 2016
I guess it's a mark of having done way too much science, but it's funny that when I hear "this exotic particle only lives for 2µs", I think "Wow that's a really long time!".
not rated yet Jan 19, 2016
I'm just trying to imagine what the universe would look like if this was a valid alternate path for matter to create complex structures and perhaps even lifeforms. I know that it all eventually returns to a neutral energy state, but the moments in between literally mean everything to us.
not rated yet Feb 08, 2016
Here's a solution to the proton radius puzzle:;pli=1

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.