Nanoprobe development will enable scientists to uncover more DNA secrets

January 14, 2016

Scientists at the University of Kent have led a study that has developed a 'nanoprobe', a tenth of the size of a human hair, to help uncover more of the secrets of DNA.

New research directed by Dr Neil Kad, of the University's School of Biosciences, has led to the use of the nanoprobe to study how individual proteins interact with DNA. Invisible to the human eye, this tiny triangular probe can be captured using and then moved around inside a microscope chamber.

Proteins interact with each other and with other chemical components such as DNA. These interactions are classically studied multiple at a time to provide an average view of their behaviour. This makes understanding how molecules respond to force much more difficult.

Scientists at Kent have previously developed a new technology that involves suspending single long strands of DNA between microscopic platforms to form 'tightropes'. Now, by using the nanoprobe, developed at the Rutherford Appleton Laboratory, it is possible to manipulate proteins bound to these tightropes; enabling the action of these proteins to be investigated with unprecedented detail.

The development will lead to greater understanding of how proteins attach to DNA, and represents an important step towards a marriage of complex nanodevices and single molecule biology. Researchers hope that in the future the development will enable them to study a large range of molecular interactions directly.

This research, entitled Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe was performed in collaboration with the Rutherford Appleton Laboratory at Harwell, UK and also with the University of Pittsburgh, USA. The paper was published in the online journal Scientific Reports on 22 December.

Explore further: A new single-molecule tool to observe enzymes at work

More information: Michelle Simons et al. Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe, Scientific Reports (2015). DOI: 10.1038/srep18486

Related Stories

A new single-molecule tool to observe enzymes at work

September 28, 2015

A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins. ...

DNA repair enzyme mapped in atomic detail

December 11, 2015

An enzyme crucial to the process of DNA repair in our cells has been mapped in atomic detail by researchers at the University of Dundee, the UK's top-rated University for Biological Sciences.

Gene crowding affects cell development

January 12, 2016

The crowding of genes inside the nucleus of a cell affects the way they replicate, and how they are turned on and off, according to a study led by the Liggins Institute at the University of Auckland.

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...

Smashing metallic cubes toughens them up

October 20, 2016

Scientists at Rice University are smashing metallic micro-cubes to make them ultrastrong and tough by rearranging their nanostructures upon impact.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.